Alvarus, Thomas, Liber de triplici motu, 1509

Page concordance

< >
Scan Original
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
< >
page |< < of 290 > >|
67 tis ex vigeſimaſeptima concluſione.
Quadrageſima concluſio Si aliqua
potentia non variata mouetur per mediuꝫ vnifor­
miter difforme incipiendo ab extremo intenſiori:
talis potentia continuo velocius et velocius intē-
dit motū ſuum.
Patet / quia continuo velocius et
velocius decreſcit ſibi de reſiſtentia: igitur conti-
nuo velocius et velocius intendit motuꝫ ſuum
Pa­
tet conſequentia ex vigeſimaoctaua concluſione.
Quadrageſimaprima ↄ̨̨cluſio Stat
duas potētias equales moueri per mediū vnifor­
miter difforme incipiendo ab extremo remiſſiori
eiuſdē medii ipſis et medio ſimplicter inuariatis
et tamē vnam moueri velocius altera
Probatur
hec concluſio et capio vnum mediū quadratū vni­
formiter difforme a non gradu vſ ad octauū vel
a certo gradu (in idē redit) / et volo /  a. et b. ſint due
potentie equales: et incipiat vna moueri ab extre­
mo remiſſiori per diametrū et alia per lineam re-
ctã ab eodem extremo: quo poſito ſic arguo a. et b.
mouebuntur: et a. non mouebitur tardius ipſo b.
nec eque velociter adequate: ergo velocius.
Ma-
ior ptꝫ cum conſequentia.
et minor probatur. q2 ſi
mouerentur equaliter ſequeretur /  equales potē­
tie cum inequalibus reſiſtentiis equaliter mouerē­
tur / et per conſequens ab inequalibus proportio-
nibus equales motus proueniunt: quod eſt contra
primã ſuppoſitionē huius capitis et directe cõtra
opinionem.
Sequela tamen probatur / quoniam
capto quocū pūcto diametri equaliter diſtante
ab angulo quadrati: hoc eſt a linea quadrati fa-
ciente angulum ſicut certus pūctus: eſt minoris re­
ſiſtentie quã pūctus exiſtens in linea recta equali-
ter diſtante cum ipſo.
ergo ſequitur /  ſemꝑ a. ha-
bebit minorē reſiſtentiam / et per conſequens maio­
rem proportionem ad talem pūctū quã b. in pun-
cto ſibi correſpondente: et tamen per te a. et b. mo­
uentur equaliter: igitur ꝓpoſituꝫ.
Q, aūt in tali
puncto diametri ſit ſemper reſiſtentia minor quã
in puncto ſibi correſpõdente ī linea directe / et per-
pendiculariter ꝓcedente ꝓbatur / quoniaꝫ ſemper
talis punctus plus diſtat a gradu ſūmo illius cor­
poris / quam punctus ſibi correſpondens in linea
directe et perpēdiculariter procedente.
igitur ſem­
per in eo eſt minor reſiſtentia et per conſequens ꝓ­
portio maior
Patet hec demonſtratio aſpicienti
figuram quadrataꝫ vniformiter difformē quo ad
reſiſtentiam / que ſit .a.b. et .c.d. et extremū remiſſiſ­
ſimū ſit .ac. et linea diametralis ꝑ quã a. mouetur
ſit .ad. et linea per quam mouetur b. ſit .cd.
6[Figure 6]
qua figura inſpecta patet facile ꝓpoſitum. Et hec
de his concluſionibus in quibus ferme ſequutus
ſum calculatorem in capitulo de motu locali dem­
pta vltima quam adiunxi.
Sextum capitulum / in quo ponūtur
alique obiectiones contra aliquas
concluſiones ſuperioris capitis.
COntra quintam concluſio-
nem arguitur ſic.
per intenſionem et cre­
mētum alicuius reſiſtētie reſpectu dua­
rum potentiarum inequalium minor potentia ve­
locius remittit motū ſuum quã maior: igitur ſex-
ta ↄ̨cluſio falſa.
Arguit̄̄ antecedēs et pono /  ſit a.
potētia vt .8. et b. potētia vt .4. et c. reſiſtētia vt 2.
et d. reſiſtētia vt vnū: et agat vtra illaꝝ potētiaꝝ
cū vtra illarum reſiſtentiarū: et creſcat c. reſiſten­
tia vt .2. vniformiter / quo ad vſ ſit vt .4. et d. reſiſtē­
tia itidem vniformiter creſcat / quo ad vſ ſit vt .4.
creſcat tamen reſiſtētia vt .2. in duplo velociꝰ quã
reſiſtentia vt vnū.
ita  quando reſiſtentia vt vnuꝫ
acquiſiuerit vnum gradum reſiſtentie: reſiſtentia
vt duo acquirat duos.
quo poſito ſic argumentor
b. potentia vt .4. velocius remittit motum ſuum
cū c. reſiſtentia vt .2. quã a. potentia vt .8. cum ea-
dem reſiſtentia vt duo.
igitur aſſumptum verum.
Probatur antecedens / quoniaꝫ eque velociter po­
tentia a. vt .8. remittet motū ſuum cum reſiſtentia
c. vt .2. ſicut potentia b. vt .4. cū reſiſtentia d. / vt vnū
quoniam proportiones erunt equales: et eque ve-
lociter ꝓportionabiliter deperduntur.
igitur ſem­
per manebunt equales ad inuicem ſed b. potentia
vt .4. velocius remittet motū ſuum cū c. reſiſtentia
vt .2. quam cū d. reſiſtentia vt vnum / ergo b. poten­
tia vt .4. velocius remittet cum c. motū ſuum.
quaꝫ
a. potentia vt .8. cū eodē c. / quod fuit probandum.
Conſequentia patet cū maiore: et minor probatur /
quoniam velocius deperditur proportio b. ad c.
quam proportio b. ad d. / ergo velocius remittitur
motus proueniens a proportione b. ad c. / quã mo­
tus proueniens a proportione b. ad d.
Conſequen­
tia eſt nota et arguitur antecedens.
quoniam pro­
portio b. potētie vt 4. ad c. reſiſtētiã vt .2. ē ī duplo
minor ꝓportione b. potētie vt .4. ad d. reſiſtentiã vt
vnum: quoniam vna dupla et alia quadrupla.
et
plꝰquã ī duplo citiꝰ remittet̄̄ ꝓportio b. ad c. quã
ꝓportio b. ad d. / igr̄ velociꝰ remittet̄̄ ꝓportio b. ad
c. quã b. ad .d. / quod fuit probandū.
Conſequentia
eſt nota / vt apparet cum maiore: et minor ꝓbatur /
quoniam quando reſiſtentia c. acquiſiuerit duos
gradus reſiſtentie / tunc proportio b. ad c. erit omī­
no deperdita.
et in eodem tempore adequate ꝑde­
tur proportio dupla ipſi quadruple, et acquiretur
vnus gradus dūtaxat ipſi reſiſtentie d. / et reſtabūt
acquirendi duo qui debēt acquiri vniformiter: er­
go illi acquirentur adequate ī duplo tempore ad
acquiſitionem primi: et ſic ſequitur /  tempus de-
perditionis proportionis b. ad c. eſt ſubtriplū, ad
tempus deperditionis proportionis b. ad d. / et per
conſequens pluſquã in duplo citius deperditur ꝓ­
portio b. ad c. quã b. ad d. / quod fuit probanduꝫ.
Reſpondeo negando antecedens: et
ad probationē admiſſo caſu negat̄̄ añs: et ad pro-
bationē negatur hec minor b. velociꝰ remittet mo­
tū ſuū cū c. quã cum d. / et ad ꝓbationē negatur an-
tecedens et ad probationē antecedētis negat̄̄ hec
ↄ̨ña in qua eſt virtus argumenti: proportio b. ad
c. ē in duplo minor ꝓportione b. ad d. / et pluſquaꝫ
in duplo citius deperdetur proportio b. ad c. quã
ꝓportio b. ad .d. / ergo velocius deperdetur propor­
portio b. ad .c. / quã deperdetur proportio b. ad d. / ſi­
cut eam eſſe negandam docet triceſimaſexta con-
cluſio 11inq̇rit̄̄ bo­
uitaſ ↄ̨ña­
rū calcu.
In probatione tamē ↄ̨ñe negate adducit
calculator duas conditionales: quarū neutra eſt
bona ↄ̨ña.
Ipſe tamē nihil ad eas reſpondet Pro
quarū impugnatione pono aliqua correlaria.
221. correl.
¶ Primū correlariū in caſu argumenti d. reſiſtē-
tia vt vnum et .c. reſiſtentia vt .2. / non vniformiter
creſcūt / et tamē vtra illarum vniformiter creſcit.
Probatur / quia quando reſiſtentia vt vnum acq̇-
rit vnitatem: reſiſtentia vt .2. acquirit dualitē gra­

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index