Galilei, Galileo, Discourse concerning the natation of bodies, 1663

List of thumbnails

< >
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
< >
page |< < of 77 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <pb pagenum="406"/>
            <p type="main">
              <s>And ſo I ſay, that Lead is more grave
                <emph type="italics"/>
              in ſpecie
                <emph.end type="italics"/>
              than Tinn, becauſe
                <lb/>
              if you take of them two equall Maſſes, that of the Lead weigheth
                <lb/>
              more.</s>
            </p>
            <p type="head">
              <s>DEFINITION IV.</s>
            </p>
            <p type="main">
              <s>
                <emph type="italics"/>
              But I call that Body more grave abſolutely than this, if
                <lb/>
              that weigh more than this, without any reſpect had to
                <lb/>
              the Maſſes.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s>And thus a great piece of Wood is ſaid to weigh more than a
                <lb/>
              little lump of Lead, though the Lead be
                <emph type="italics"/>
              in ſpecie
                <emph.end type="italics"/>
              more heavy than
                <lb/>
              the Wood. </s>
              <s>And the ſame is to be underſtood of the leſs grave
                <emph type="italics"/>
              in
                <lb/>
              ſpecie,
                <emph.end type="italics"/>
              and the leſs grave abſolutely.</s>
            </p>
            <p type="main">
              <s>Theſe Termes defined, I take from the Mechanicks two
                <lb/>
              ples: the firſt is, that</s>
            </p>
            <p type="head">
              <s>AXIOME. I.</s>
            </p>
            <p type="main">
              <s>
                <emph type="italics"/>
              Weights abſolutely equall, moved with equall Velocity,
                <lb/>
              are of equall Force and Moment in their operations.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="head">
              <s>
                <emph type="italics"/>
              DEFINITION V.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s>Moment, amongſt Mechanicians, ſigrifieth that
                <lb/>
              Vertue, that Force, or that Efficacy, with which
                <lb/>
              the Mover moves, and the Moveable reſiſts.</s>
            </p>
            <p type="main">
              <s>
                <emph type="italics"/>
              Which Vertue dependes not only on the ſimple Gravity, but on the
                <lb/>
              Velocity of the Motion, and on the diverſe Inclinations of the Spaces
                <lb/>
              along which the Motion is made: For a deſcending Weight makes a
                <lb/>
              greater
                <emph.end type="italics"/>
              Impetus
                <emph type="italics"/>
              in a Space much declining, than in one leſs declining;
                <lb/>
              and in ſumme, what ever is the occaſion of ſuch Vertue, it ever retaines
                <lb/>
              the name of
                <emph.end type="italics"/>
              Moment;
                <emph type="italics"/>
              nor in my Judgement, is this ſence new in our
                <lb/>
              Idiome, for, if I mistake not, I think we often ſay; This is a weighty
                <lb/>
              buſineſſe, but the other is of ſmall moment: and we conſider lighter
                <lb/>
              ters and let paſs thoſe of Moment; a Metaphor, I ſuppoſe, taken from
                <lb/>
              the Mechanicks.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s>As for example, two weights equall in abſolute Gravity, being
                <lb/>
              put into a Ballance of equall Arms, they ſtand in
                <emph type="italics"/>
              Equilibrium,
                <emph.end type="italics"/>
                <lb/>
              ther one going down, nor the other up: becauſe the equality of the
                <lb/>
              Diſtances of both, from the Centre on which the Ballance is
                <lb/>
              ted, and about which it moves, cauſeth that thoſe weights, the ſaid
                <lb/>
              Ballance moving, ſhall in the ſame Time move equall Spaces, that is,
                <lb/>
              ſhall move with equall Velocity, ſo that there is no reaſon for which </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>