DelMonte, Guidubaldo, In duos Archimedis aequeponderantium libros Paraphrasis : scholijs illustrata
page |< < of 207 > >|
    <archimedes>
      <text>
        <body>
          <chap id="N10019">
            <p id="N125D8" type="main">
              <s id="N125DA">
                <pb xlink:href="077/01/071.jpg" pagenum="67"/>
              portionem A ad C, quàm ED ad EF. Dico, vt magnitu­
                <lb/>
              dines ex diſtantijs ED EF æ〈que〉ponderent, maiori o­
                <lb/>
              pus eſſe magnitudine in F, quàm ſit magnitudo A;
                <lb/>
              ita vt ipſi C in D æ〈que〉ponderare poſſit. </s>
              <s id="N125E8">fiat ED
                <lb/>
              ad EG, vt magnitudo A ad magnitudinem C.
                <lb/>
              Deindefiat EK æqualis EG. exponaturquè altera ma­
                <lb/>
              gnitudo L ipſi A ęqualis. </s>
              <s id="N125F0">Quoniam igitur minorem
                <lb/>
              habet proportionem A ad C, quàm ED ad EF, &
                <lb/>
              vt A ad C, ita ED ad EG; habebit ED ad
                <lb/>
              EG minorem proportionem, quàm ad EF. ac
                <arrow.to.target n="marg55"/>
                <lb/>
              EF minor eſt, quàm EG. quoniam ausem A ad C
                <lb/>
              eſt, vt ED ad EG, commenſurabiles magnitudines
                <lb/>
              AC ex diſtantijs ED EG æ〈que〉ponderabunt. </s>
              <s id="N12601">
                <arrow.to.target n="marg56"/>
                <lb/>
              verò EK ſit æqualis EG, magnitudines AL æ­
                <lb/>
              quales ex diſtantis æqualibus EK EG ſimiliter æ〈que〉­
                <lb/>
              ponderabunt. </s>
              <s id="N1260C">At verò quoniam C in D æ〈que〉­
                <lb/>
              ponderat ipſi A in G, ſimiliter L in K eidem A in
                <lb/>
              G ę〈que〉ponderat; ęqualem habebit grauitatem C in D,
                <arrow.to.target n="marg57"/>
                <lb/>
              L in K. Ita〈que〉 quoniam diſtantia EG æqualis eſt diſtan
                <lb/>
              tiæ Ek, longitudo EK maior erit longitudine EF. ergo
                <lb/>
              magnitudines AL ęquales ex inæqualibus diſtantijs
                <arrow.to.target n="marg58"/>
                <lb/>
              EF non ę〈que〉ponderabunt. </s>
              <s id="N12620">ſed magnitudo L deorſum ver­
                <lb/>
              get. </s>
              <s id="N12624">ſi igitur in F collocanda ſit magnitudo, quæ æ〈que〉pon
                <lb/>
              deret ipſi L in K, proculdubiò hęc magnitudine A ma­
                <lb/>
              ior exiſtet. </s>
              <s id="N1262A">Inæqualia enim grauia, nempè L, &
                <arrow.to.target n="marg59"/>
                <lb/>
              do maior, quàm A, exinæqualibus diſtantijs EK EF æ­
                <lb/>
              〈que〉ponderant, dummodo maius, hoc eſt magnitudo maior,
                <lb/>
              quàm A, ſit in diſtantia minori EF. minusverò, hoc eſt ma­
                <lb/>
              gnitudo L, ſit in minori EK. Quoniam ita〈que〉 magnitudo
                <lb/>
              C in D eſt ę〈que〉grauis, vt L in K, magnitudo, quæ in F
                <lb/>
              ipſi L in K æ〈que〉ponderat, eadem quo〈que〉 in F ipſi C in D
                <lb/>
              æ〈que〉ponderabit maior verò magnitudo, quàm ſit A, in F ipſi
                <lb/>
              L in K æ〈que〉ponderat, ergo maior magnitudo, quàm A in
                <lb/>
              F, ipſi C in D æ〈que〉ponderabit. </s>
              <s id="N12641">quod demonſtrare opor­
                <lb/>
              tebat. </s>
            </p>
            <p id="N12645" type="margin">
              <s id="N12647">
                <margin.target id="marg55"/>
              10.
                <emph type="italics"/>
              quinti.
                <emph.end type="italics"/>
              </s>
            </p>
            <p id="N12650" type="margin">
              <s id="N12652">
                <margin.target id="marg56"/>
              6.
                <emph type="italics"/>
              huius.
                <emph.end type="italics"/>
              </s>
            </p>
            <p id="N1265B" type="margin">
              <s id="N1265D">
                <margin.target id="marg57"/>
                <emph type="italics"/>
                <expan abbr="cõm">comm</expan>
              . not.
                <emph.end type="italics"/>
              </s>
            </p>
            <p id="N12668" type="margin">
              <s id="N1266A">
                <margin.target id="marg58"/>
              2.
                <emph type="italics"/>
              poſt bu­
                <lb/>
              ius.
                <emph.end type="italics"/>
              </s>
            </p>
            <p id="N12675" type="margin">
              <s id="N12677">
                <margin.target id="marg59"/>
              3.
                <emph type="italics"/>
              huius.
                <emph.end type="italics"/>
              </s>
            </p>
            <p id="N12680" type="main">
              <s id="N12682">His cognitis poſſumus ad Archimedis demonſtrationem
                <lb/>
              accedere. </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>