DelMonte, Guidubaldo
,
In duos Archimedis aequeponderantium libros Paraphrasis : scholijs illustrata
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
page
|<
<
of 207
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
id
="
N10019
">
<
p
id
="
N125D8
"
type
="
main
">
<
s
id
="
N125DA
">
<
pb
xlink:href
="
077/01/071.jpg
"
pagenum
="
67
"/>
portionem A ad C, quàm ED ad EF. Dico, vt magnitu
<
lb
/>
dines ex diſtantijs ED EF æ〈que〉ponderent, maiori o
<
lb
/>
pus eſſe magnitudine in F, quàm ſit magnitudo A;
<
lb
/>
ita vt ipſi C in D æ〈que〉ponderare poſſit. </
s
>
<
s
id
="
N125E8
">fiat ED
<
lb
/>
ad EG, vt magnitudo A ad magnitudinem C.
<
lb
/>
Deindefiat EK æqualis EG. exponaturquè altera ma
<
lb
/>
gnitudo L ipſi A ęqualis. </
s
>
<
s
id
="
N125F0
">Quoniam igitur minorem
<
lb
/>
habet proportionem A ad C, quàm ED ad EF, &
<
lb
/>
vt A ad C, ita ED ad EG; habebit ED ad
<
lb
/>
EG minorem proportionem, quàm ad EF. ac
<
arrow.to.target
n
="
marg55
"/>
<
lb
/>
EF minor eſt, quàm EG. quoniam ausem A ad C
<
lb
/>
eſt, vt ED ad EG, commenſurabiles magnitudines
<
lb
/>
AC ex diſtantijs ED EG æ〈que〉ponderabunt. </
s
>
<
s
id
="
N12601
">
<
arrow.to.target
n
="
marg56
"/>
<
lb
/>
verò EK ſit æqualis EG, magnitudines AL æ
<
lb
/>
quales ex diſtantis æqualibus EK EG ſimiliter æ〈que〉
<
lb
/>
ponderabunt. </
s
>
<
s
id
="
N1260C
">At verò quoniam C in D æ〈que〉
<
lb
/>
ponderat ipſi A in G, ſimiliter L in K eidem A in
<
lb
/>
G ę〈que〉ponderat; ęqualem habebit grauitatem C in D,
<
arrow.to.target
n
="
marg57
"/>
<
lb
/>
L in K. Ita〈que〉 quoniam diſtantia EG æqualis eſt diſtan
<
lb
/>
tiæ Ek, longitudo EK maior erit longitudine EF. ergo
<
lb
/>
magnitudines AL ęquales ex inæqualibus diſtantijs
<
arrow.to.target
n
="
marg58
"/>
<
lb
/>
EF non ę〈que〉ponderabunt. </
s
>
<
s
id
="
N12620
">ſed magnitudo L deorſum ver
<
lb
/>
get. </
s
>
<
s
id
="
N12624
">ſi igitur in F collocanda ſit magnitudo, quæ æ〈que〉pon
<
lb
/>
deret ipſi L in K, proculdubiò hęc magnitudine A ma
<
lb
/>
ior exiſtet. </
s
>
<
s
id
="
N1262A
">Inæqualia enim grauia, nempè L, &
<
arrow.to.target
n
="
marg59
"/>
<
lb
/>
do maior, quàm A, exinæqualibus diſtantijs EK EF æ
<
lb
/>
〈que〉ponderant, dummodo maius, hoc eſt magnitudo maior,
<
lb
/>
quàm A, ſit in diſtantia minori EF. minusverò, hoc eſt ma
<
lb
/>
gnitudo L, ſit in minori EK. Quoniam ita〈que〉 magnitudo
<
lb
/>
C in D eſt ę〈que〉grauis, vt L in K, magnitudo, quæ in F
<
lb
/>
ipſi L in K æ〈que〉ponderat, eadem quo〈que〉 in F ipſi C in D
<
lb
/>
æ〈que〉ponderabit maior verò magnitudo, quàm ſit A, in F ipſi
<
lb
/>
L in K æ〈que〉ponderat, ergo maior magnitudo, quàm A in
<
lb
/>
F, ipſi C in D æ〈que〉ponderabit. </
s
>
<
s
id
="
N12641
">quod demonſtrare opor
<
lb
/>
tebat. </
s
>
</
p
>
<
p
id
="
N12645
"
type
="
margin
">
<
s
id
="
N12647
">
<
margin.target
id
="
marg55
"/>
10.
<
emph
type
="
italics
"/>
quinti.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
id
="
N12650
"
type
="
margin
">
<
s
id
="
N12652
">
<
margin.target
id
="
marg56
"/>
6.
<
emph
type
="
italics
"/>
huius.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
id
="
N1265B
"
type
="
margin
">
<
s
id
="
N1265D
">
<
margin.target
id
="
marg57
"/>
<
emph
type
="
italics
"/>
<
expan
abbr
="
cõm
">comm</
expan
>
. not.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
id
="
N12668
"
type
="
margin
">
<
s
id
="
N1266A
">
<
margin.target
id
="
marg58
"/>
2.
<
emph
type
="
italics
"/>
poſt bu
<
lb
/>
ius.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
id
="
N12675
"
type
="
margin
">
<
s
id
="
N12677
">
<
margin.target
id
="
marg59
"/>
3.
<
emph
type
="
italics
"/>
huius.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
id
="
N12680
"
type
="
main
">
<
s
id
="
N12682
">His cognitis poſſumus ad Archimedis demonſtrationem
<
lb
/>
accedere. </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>