Commandino, Federico, Liber de centro gravitatis solidorum, 1565

Page concordance

< >
Scan Original
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
< >
page |< < of 101 > >|
1pyramidem, uel conum, uel coni portionem eandem pro­
portionem habet, quam baſes ab, cd unà cum ef ad ba­
ſim ab.
quod demonſtrare uolebamus.
6. 11. duo
decimi
Fruſtum uero ad æquale eſſe pyramidi, uel co
no, uel coni portioni, cuius baſis conſtat ex baſi­
bus ab, cd, ef, & altitudo fruſti altitudini eſt æ­
qualis, hoc modo oſtendemus.
Sit fruſtum pyramidis abcdef, cuius maior baſis trian­
gulum abc; minor def: & ſecetur plano baſibus æquidi­
ſtante, quod ſectionem faciat triangulum ghk inter trian­
gula abc, def proportionale.
Iam ex iis, quæ demonſtrata
ſunt in 23. huius, patet fruſtum abcdef diuidi in tres pyra
mides proportionales; & earum maiorem eſſe pyramidem
abcd minorem uero defb.
ergo pyramis à triangulo ghk
conſtituta, quæ altitudinem habeat fruſti altitudini æqua­
lem, proportionalis eſt inter pyramides abcd, defb: &
idcirco fruſtum abcdef tribus dictis pyramidibus æqua
65[Figure 65]
le erit.
Itaque ſi intelligatur alia pyra­
mis æque alta, quæ baſim habeat ex tri
bus baſibus abc, def, ghk conſtan­
tem; perſpicuum eſt ipſam eiſdem py­
ramidibus, & propterea ipſi fruſto æ­
qualem eſſe.
Rurſus ſit fruſtum pyramidis ag, cu
ius maior baſis quadrilaterum abcd,
minor efgh: & ſecetur plano baſi­
bus æquidiſtante, ita ut fiat ſectio qua­
drilaterum Klmn, quod ſit proportio
nale inter quadrilatera abcd, efgh.
Dico pyramidem,
cuius baſis ſit æqualis tribus quadrilateris abcd, klmn,
efgh, & altitudo æqualis altitudini fruſti, ipſi fruſto ag
æqualem eſſe.
Ducatur enim planum per lineas fb, hd,

Text layer

  • Dictionary
  • Places

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index