Huygens, Christiaan, Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica

Table of contents

< >
[101.] PROP. XXXI. PROBLEMA. Ex dato arcu invenire ſinum.
[102.] PROP. XXXII. PROBLEMA. Invenire quadratum æquale ſpatio hyperbolico con-tento à curva hyperbolica, uno aſymptoto & dua-bus rectis alteri aſymptoto parallelis; quod ſpatium æquale eſt ſectori hyperbolico cujus baſis eſt eadem curva.
[103.] PROP. XXXIII. PROBLEMA. Propoſiti cujuscunque numeri logorithmum invenire.
[104.] SCHOLIUM.
[105.] PROP. XXXIV. PROBLEMA. Ex dato logorithmo invenire ejus numerum.
[106.] Tom. II. Mmm
[107.] PROP. XXXV. PROBLEMA. Rectâ per datum punctum in diametro ductâ, ſemicirculum in ratione data dividere.
[108.] SCHOLIUM.
[109.] FINIS.
[110.] II. HUGENII OBSERVATIONES IN LIBRUM JACOBI GREGORII, DE VERA CIRCULI ET HYPERBOLÆ QUADRATURA.
[111.] III. DOMINI GREGORII RESPONSUM AD ANIMADVERSIONES DOMINI HUGENII, IN EJUS LIBRUM, DE VERA CIRCULI ET HYPERBOLÆ QUADRATURA.
[112.] PROP. X. PROBLEMA.
[113.] Tom. II. Nnn
[114.] CONSECTARIUM.
[115.] IV. EXCERPTA EX LITERIS Dni. HUGENII DE RESPONSO, QUOD Dnus. GREGORIUS DEDIT AD EXAMEN LIBRI, CUI TITULUS EST, VERA CIRCULI ET HYPERBOLÆ QUADRATURA.
[116.] V. EXCERPTA EX EPISTOLA D. JACOBI GREGORII, CONTINENTE QUASDAM EJUS CONSIDERATIO-NES, SUPER EPISTOLA D. HUGENII, IMPRESSA IN VINDICATIONEM EXAMINIS SUI LIBRI, DE VERA CIRCULI ET HY-PERBOLÆ QUADRATURA.
[117.] FINIS.
[118.] CHRISTIANI HUGENII GEOMETRICA VARIA. Tom. II. Ppp
[119.] I. CONSTRUCTIO LOCI AD HYPERBOLAM PER ASYMPTOTOS.
[120.] DEMONSTRATIO.
[121.] II. DEMONSTRATIO REGULÆ DE MAXIMIS ET MINIMIS.
[122.] Tom. II. Qqq
[123.] III. REGULA Ad inveniendas Tangentes linearum curvarum.
[124.] Tom. II. Rrr
[125.] IV. CHRISTIANI HUGENII EPISTOLA DE CURVIS QUIBUSDAM PECULIARIBUS.
[126.] V. PROBLEMA AB ERUDITIS SOLVENDUM: A JOHANNE BERNOULLIO IN ACTIS LIPSIENSIBUS ANNI MDCXCIII. PROPOSITUM.
[127.] Tom. II. Ttt
[128.] VI. C. H. Z. DE PROBLEMATE BERNOULLIANO IN ACTIS LIPSIENSIBUS PROPOSITO.
[129.] VII. C. H. Z. CONSTRUCTIO UNIVERSALIS PROBLEMATIS A CLARISSIMO VIRO JOH. BERNOULLIO PROPOSITI.
[130.] FINIS.
< >
page |< < (365) of 568 > >|
77365DE CIRCULI MAGNIT. INVENTA. benti duplam C G, hoc eſt, C D, & altitudinem C A: tri-
angulum vero A E C æquale triangulo baſin ipſi E F æqua-
lem habenti &
altitudinem dictam A C. Itaque apparet duas
tertias quadrilateri A E G C ſimul cum triente trianguli A E C
æquari triangulo qui baſin habeat compoſitam ex duabus ter-
tiis C D &
triente E F, altitudinem vero radii A C. Qua-
re ejuſmodi quoque triangulum majus erit ſectore A E C.
Unde liquet baſin ipſius, hoc eſt, compoſitam ex duabus
tertiis ipſius C D &
triente ipſius E F, majorem eſſe arcu
C E.
Quod erat demonſtrandum.
Theor. IX. Prop. IX.
OMnis circuli circumferentia minor eſt duabus
tertiis perimetri polygoni æqualium laterum ſibi
inſcripti &
triente perimetri polygoni ſimilis circum-
ſcripti.
Eſto Circulus cujus A centrum; & inſcribatur ei polygo-
11TAB. XXXIX.
Fig. 1.
num æquilaterum, cujus latus C D:
ſimileque aliud cir-
cumſcribatur lateribus ad priora parallelis, quorum unum ſit
E F.
Dico circuli totius circumferentiam minorem eſſe dua-
bus tertiis ambitus polygoni C D &
triente ambitus polygo-
ni E F.
Ducatur namque diameter circuli B G, quæ ſimul
inſcripti polygoni latus C D medium dividat in H, &
cir-
cumſcripti latus E F in G, (conſtat autem G fore punctum
contactus lateris E F,) Et ponatur H L æqualis ipſi H G,
&
jungantur A C, B C & producantur, occurrátque B C
lateri E F in K, producta autem A C incidet in E angu-
lum polygoni circumſcripti.
Quoniam igitur H L æqualis
H G, erit B L dupla ipſius A H:
Ideoque ut G A ad A H,
ita G B ad B L.
Major autem eſt ratio H B ad B L, quam
G B ad B H;
quoniam hætres ſeſe æqualiter excedunt G B,
H B, L B.
Itaque major erit ratio G B ad B L, hoc eſt,
G A ad A H, quam duplicata rationis G B ad B H.
Sicut
autem G A ad A H, ita eſt E G ad C H;
& ſicut G

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index