Viviani, Vincenzo
,
De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 14
[out of range]
>
[Note]
Page: 77
[Note]
Page: 77
[Note]
Page: 77
[Note]
Page: 77
[Note]
Page: 77
[Note]
Page: 77
[Note]
Page: 78
[Note]
Page: 78
[Note]
Page: 78
[Note]
Page: 78
[Note]
Page: 78
[Note]
Page: 78
[Note]
Page: 78
[Note]
Page: 78
[Note]
Page: 78
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
<
1 - 14
[out of range]
>
page
|<
<
(53)
of 347
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div162
"
type
="
section
"
level
="
1
"
n
="
86
">
<
pb
o
="
53
"
file
="
0077
"
n
="
77
"
rhead
="
"/>
</
div
>
<
div
xml:id
="
echoid-div164
"
type
="
section
"
level
="
1
"
n
="
87
">
<
head
xml:id
="
echoid-head92
"
xml:space
="
preserve
">PROBL. XII. PROP. XXVII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1811
"
xml:space
="
preserve
">Datæ portioni Parabolæ, cum dato quocunque tranſuerſo late-
<
lb
/>
re, vel cum dato recto, quod ſit minus recto datæ Parabolæ, per
<
lb
/>
eius verticem MAXIMAM Hyperbolæ portionem inſcribere; </
s
>
<
s
xml:id
="
echoid-s1812
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1813
"
xml:space
="
preserve
">
<
lb
/>
è contra.</
s
>
<
s
xml:id
="
echoid-s1814
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1815
"
xml:space
="
preserve
">Datæ portioni Hyperbolæ, per eius verticem MINIMAM Pa-
<
lb
/>
rabolæ portionem circumſcribere.</
s
>
<
s
xml:id
="
echoid-s1816
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1817
"
xml:space
="
preserve
">SIt data Parabolę portio ABCDE, cuius rectum CF, regula FG, baſis AE,
<
lb
/>
diameter CI, & </
s
>
<
s
xml:id
="
echoid-s1818
"
xml:space
="
preserve
">oporteat primùm cum dato quocunque tranſuerſo CH
<
lb
/>
_MAXIMAM_ Hyperbolæ portionem inſcribere.</
s
>
<
s
xml:id
="
echoid-s1819
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1820
"
xml:space
="
preserve
">Producatur applicata AI vſque ad occurſum
<
lb
/>
<
figure
xlink:label
="
fig-0077-01
"
xlink:href
="
fig-0077-01a
"
number
="
47
">
<
image
file
="
0077-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/QN4GHYBF/figures/0077-01
"/>
</
figure
>
cum regula in G, & </
s
>
<
s
xml:id
="
echoid-s1821
"
xml:space
="
preserve
">iungatur HG, ſecans CF in
<
lb
/>
L, & </
s
>
<
s
xml:id
="
echoid-s1822
"
xml:space
="
preserve
">cum tranſuerſo CH, rectoque CL adſcriba-
<
lb
/>
tur portioni ABCDE per verticem C
<
note
symbol
="
a
"
position
="
right
"
xlink:label
="
note-0077-01
"
xlink:href
="
note-0077-01a
"
xml:space
="
preserve
">6. huius.</
note
>
bole AMCNE, quæ Parabolen ABCDE ſecabit
<
lb
/>
in A, & </
s
>
<
s
xml:id
="
echoid-s1823
"
xml:space
="
preserve
">E (cum & </
s
>
<
s
xml:id
="
echoid-s1824
"
xml:space
="
preserve
">ipſarum regulæ ſe mutuò
<
note
symbol
="
b
"
position
="
right
"
xlink:label
="
note-0077-02
"
xlink:href
="
note-0077-02a
"
xml:space
="
preserve
">1. Co-
<
lb
/>
roll. prop.
<
lb
/>
19. huius.</
note
>
in occurſu eiuſdem communis applicatæ AE) & </
s
>
<
s
xml:id
="
echoid-s1825
"
xml:space
="
preserve
">
<
lb
/>
ſupra baſim AE erit datæ Parabolę inſcripta. </
s
>
<
s
xml:id
="
echoid-s1826
"
xml:space
="
preserve
">Iam
<
lb
/>
dico hanc portionem AMCNE eſſe _MAXIMAM_
<
lb
/>
quæſitam.</
s
>
<
s
xml:id
="
echoid-s1827
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1828
"
xml:space
="
preserve
">Quoniam quælibet alia Hyperbole adſcripta
<
lb
/>
cum eodem tranſuerſo CH, ſed cum recto, quod
<
lb
/>
minus ſit recto CL, minor eſt ipſa
<
note
symbol
="
c
"
position
="
right
"
xlink:label
="
note-0077-03
"
xlink:href
="
note-0077-03a
"
xml:space
="
preserve
">2. Co-
<
lb
/>
roll. prop.
<
lb
/>
19. huius.</
note
>
quælibet verò adſcripta cum recto, quod excedat CL, eſt quidem
<
note
symbol
="
d
"
position
="
right
"
xlink:label
="
note-0077-04
"
xlink:href
="
note-0077-04a
"
xml:space
="
preserve
">ibidem.</
note
>
ipſa AMCNE, ſed veltota cadit extra ABCDE, cum Hyperbole, cuius re-
<
lb
/>
gula ſit quæ ducitur per H & </
s
>
<
s
xml:id
="
echoid-s1829
"
xml:space
="
preserve
">F ſit circumſcripta Parabolæ ABC, & </
s
>
<
s
xml:id
="
echoid-s1830
"
xml:space
="
preserve
">eò
<
note
symbol
="
e
"
position
="
right
"
xlink:label
="
note-0077-05
"
xlink:href
="
note-0077-05a
"
xml:space
="
preserve
">21. h.</
note
>
gis, quæ cum recto CO maiore ipſo CF; </
s
>
<
s
xml:id
="
echoid-s1831
"
xml:space
="
preserve
">vel ſaltem ſecat Parabolen
<
note
symbol
="
f
"
position
="
right
"
xlink:label
="
note-0077-06
"
xlink:href
="
note-0077-06a
"
xml:space
="
preserve
">2. Co-
<
lb
/>
roll. prop.
<
lb
/>
19. huius.</
note
>
ſupra portionis baſim AE, cum quælibet regula ducta ex H inter L, & </
s
>
<
s
xml:id
="
echoid-s1832
"
xml:space
="
preserve
">F, vt
<
lb
/>
per P, & </
s
>
<
s
xml:id
="
echoid-s1833
"
xml:space
="
preserve
">infra contingentem CF producta, ſecet regulam FG inter ipſam
<
lb
/>
contingentem, & </
s
>
<
s
xml:id
="
echoid-s1834
"
xml:space
="
preserve
">applicatam AEG. </
s
>
<
s
xml:id
="
echoid-s1835
"
xml:space
="
preserve
">Quare talis Hyperbolæ portio AMC-
<
lb
/>
NE eſt _MAXIMA_ inſcripta quæſita cũ dato tranſuerſo CH. </
s
>
<
s
xml:id
="
echoid-s1836
"
xml:space
="
preserve
">Quod primò, &</
s
>
<
s
xml:id
="
echoid-s1837
"
xml:space
="
preserve
">c.</
s
>
<
s
xml:id
="
echoid-s1838
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1839
"
xml:space
="
preserve
">Si verò inſcribenda ſit _MAXIMA_ Hyperbolæ portio cum dato recto CL,
<
lb
/>
quod minus ſit recto Parabolæ CF, (nam cum æquali, vel maiori ſemper eſ-
<
lb
/>
ſet circumſcripta) iungatur GL, & </
s
>
<
s
xml:id
="
echoid-s1840
"
xml:space
="
preserve
">producatur, ipſa productam diametrum
<
lb
/>
IC ſecabit in H, cum eadem ſecet FG alteram Parallelarum ipſi diametro;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1841
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1842
"
xml:space
="
preserve
">cum tranſuerſo HC, rectoque CL adſcribatur per C Hyperbole
<
note
symbol
="
g
"
position
="
right
"
xlink:label
="
note-0077-07
"
xlink:href
="
note-0077-07a
"
xml:space
="
preserve
">6. huius.</
note
>
NE, quæ ſecabit, vt ſupra, Parabolen ABCDE in A, & </
s
>
<
s
xml:id
="
echoid-s1843
"
xml:space
="
preserve
">E, eique erit
<
note
symbol
="
h
"
position
="
right
"
xlink:label
="
note-0077-08
"
xlink:href
="
note-0077-08a
"
xml:space
="
preserve
">1. Co-
<
lb
/>
roll. prop.
<
lb
/>
19. huius.</
note
>
ſcripta, eritque _MAXIMA_. </
s
>
<
s
xml:id
="
echoid-s1844
"
xml:space
="
preserve
">Nam quæ cum eodem recto CL, ſed cum tranſ-
<
lb
/>
uerſo, quod excedat CH, minor eſt ipſa AMCNE; </
s
>
<
s
xml:id
="
echoid-s1845
"
xml:space
="
preserve
">quæ verò cum
<
note
symbol
="
i
"
position
="
right
"
xlink:label
="
note-0077-09
"
xlink:href
="
note-0077-09a
"
xml:space
="
preserve
">3. Corol.
<
lb
/>
19. huius.</
note
>
uerſo CQ minore ipſo CH, eſt quidem maior Hyperbola AMCNE,
<
note
symbol
="
l
"
position
="
right
"
xlink:label
="
note-0077-10
"
xlink:href
="
note-0077-10a
"
xml:space
="
preserve
">ibidem.</
note
>
omnino ſecat Parabolen ABCDE ſupra baſim AE, cum & </
s
>
<
s
xml:id
="
echoid-s1846
"
xml:space
="
preserve
">eius regula
<
note
symbol
="
m
"
position
="
right
"
xlink:label
="
note-0077-11
"
xlink:href
="
note-0077-11a
"
xml:space
="
preserve
">3. Co-
<
lb
/>
rol. 19. h.</
note
>
infra contingentem producta, ſecet regulam FG ſupra eandem applicatam.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1847
"
xml:space
="
preserve
">Quare huiuſmodi portio Hyperbolæ AMCNE eſt _MAXIMA_ inſcripta </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>