Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 22
[out of range]
>
<
1 - 22
[out of range]
>
page
|<
<
(67)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div7
"
type
="
chapter
"
level
="
2
"
n
="
1
">
<
div
xml:id
="
echoid-div195
"
type
="
math:theorem
"
level
="
3
"
n
="
104
">
<
p
>
<
s
xml:id
="
echoid-s902
"
xml:space
="
preserve
">
<
var
>
<
pb
o
="
67
"
rhead
="
THEOREM. ARIT.
"
n
="
79
"
file
="
0079
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0079
"/>
r.f.</
var
>
hoc eſt
<
var
>.o.r.</
var
>
ad
<
var
>.m.s.</
var
>
ex .11. quinti. </
s
>
<
s
xml:id
="
echoid-s903
"
xml:space
="
preserve
">Itaque ex communi ſcientia ſic ſe habe-
<
lb
/>
bit
<
var
>.d.i.</
var
>
ad
<
var
>.d.b.</
var
>
vt
<
var
>.e.d.</
var
>
ad
<
var
>.e.b</
var
>
: cum
<
var
>.e.d.</
var
>
æqualis ſit
<
var
>.t.a</
var
>
. </
s
>
<
s
xml:id
="
echoid-s904
"
xml:space
="
preserve
">Ita etiam vt
<
var
>.e.n.</
var
>
ad
<
var
>.n.b</
var
>
: cum
<
var
>.n.
<
lb
/>
e.</
var
>
æqualis ſit
<
var
>.o.r</
var
>
. </
s
>
<
s
xml:id
="
echoid-s905
"
xml:space
="
preserve
">Iam ſi ſic ſe habeat
<
var
>.d.i.</
var
>
ad
<
var
>.d.b.</
var
>
vt
<
var
>.d.e.</
var
>
ad
<
var
>.e.b.</
var
>
permutando
<
reg
norm
="
quoque
"
type
="
simple
">quoq;</
reg
>
ſic
<
lb
/>
ſe habebit
<
var
>.d.i.</
var
>
ad
<
var
>.d.e.</
var
>
vt
<
var
>.d.b.</
var
>
ad
<
var
>.b.e.</
var
>
& compon endo ita
<
var
>.i.d.e.</
var
>
ad
<
var
>.e.d.</
var
>
vt
<
var
>.d.b.e.</
var
>
ad
<
var
>.e.
<
lb
/>
b.</
var
>
& permutando ſic
<
var
>.i.d.e.</
var
>
ad
<
var
>.d.b.e.</
var
>
vt. de
<
var
>.a.d.e.b.</
var
>
nempe vt
<
var
>.e.n.</
var
>
ad
<
var
>.n.b.</
var
>
& permutan
<
lb
/>
do ita
<
var
>.i.d.e.</
var
>
ad
<
var
>.e.n.</
var
>
vt
<
var
>.d.b.e.</
var
>
ad
<
var
>.b.n.</
var
>
& componendo ita
<
var
>.i.d.e.n.</
var
>
ad
<
var
>.n.e.</
var
>
vt
<
var
>.d.b.e.</
var
>
et
<
var
>.b.
<
lb
/>
n.</
var
>
ad
<
var
>.b.n.</
var
>
& permutando ſic
<
var
>.i.d.e.n.</
var
>
ad
<
var
>.d.b.e.</
var
>
et
<
var
>.b.n.</
var
>
nempe ad
<
var
>.a.c</
var
>
:
<
var
>f.r</
var
>
:
<
var
>m.s</
var
>
: vt
<
var
>.e.n.</
var
>
ad
<
var
>.
<
lb
/>
n.b.</
var
>
hoc eſt. ut
<
var
>.o.r.</
var
>
ad
<
var
>.m.s.</
var
>
quod erat propoſitum.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div197
"
type
="
math:theorem
"
level
="
3
"
n
="
105
">
<
head
xml:id
="
echoid-head122
"
xml:space
="
preserve
">THEOREMA
<
num
value
="
105
">CV</
num
>
.</
head
>
<
p
>
<
s
xml:id
="
echoid-s906
"
xml:space
="
preserve
">CVR deſideranti ſummam quorumcunque terminorum progreſſionis conti-
<
lb
/>
nuæ geometricæ cognoſcere. </
s
>
<
s
xml:id
="
echoid-s907
"
xml:space
="
preserve
">Rectè minimus terminus ex maximo detrahen
<
lb
/>
dus eſt,
<
reg
norm
="
reſiduumque
"
type
="
simple
">reſiduumq́;</
reg
>
per denominantem progreſſionis dempta vnitate diuidendum,
<
lb
/>
<
reg
norm
="
prouenientique
"
type
="
simple
">prouenientiq́;</
reg
>
maximum terminum addendum, ex quo oritur ſumma quæſita.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s908
"
xml:space
="
preserve
">Exempli gratia, ſi darentur quatuor termini continui proportionales .8. 12. 18.
<
lb
/>
27. primum hoc eſt minimum .8. ex vltimo .27. detraheremus: </
s
>
<
s
xml:id
="
echoid-s909
"
xml:space
="
preserve
">
<
reg
norm
="
remaneretque
"
type
="
simple
">remaneretq́;</
reg
>
.19. qui
<
lb
/>
per denominantem progreſſionis, dempta vnitate, diuideretur. </
s
>
<
s
xml:id
="
echoid-s910
"
xml:space
="
preserve
">Quo loco animad
<
lb
/>
uertendum eſt, quamlibet
<
reg
norm
="
denominationem
"
type
="
context
">denominationẽ</
reg
>
cuiuſcunque proportionis numerorum
<
lb
/>
ſupra vnitatem fieri, nam de proportionibus multiplicibus dubitandum non eſt, &
<
lb
/>
idipſum de ſuperparticularibus, & ſuperpartientibus eſt intelligendum, vt in præ-
<
lb
/>
ſenti proportio ſeſquialtera inter duos terminos cogitanda eſt, nempe inter vnum
<
lb
/>
& dimidium, atque vnum. </
s
>
<
s
xml:id
="
echoid-s911
"
xml:space
="
preserve
">Seſquitertia autem inter vnum & tertiam partem,
<
lb
/>
& vnum. </
s
>
<
s
xml:id
="
echoid-s912
"
xml:space
="
preserve
">Seſquiquinta inter vnum cum quinta parte, & vnum. </
s
>
<
s
xml:id
="
echoid-s913
"
xml:space
="
preserve
">De ſuperpartien
<
lb
/>
tibus idem aſſero quod de proportione
<
reg
norm
="
ſuperbipartiente
"
type
="
context
">ſuperbipartiẽte</
reg
>
tertias appellata, vt .5.
<
lb
/>
ad .3. quæ cogitanda eſſet inter vnum duas tertias, & vnum, ſuperbipartiens quar-
<
lb
/>
tas inter vnum tres quartas, & vnum, ita vt minor terminus, numerans ſcilicet, ſem
<
lb
/>
per ſit vnitas, alter verò denominans. </
s
>
<
s
xml:id
="
echoid-s914
"
xml:space
="
preserve
">Idem de cæteris. </
s
>
<
s
xml:id
="
echoid-s915
"
xml:space
="
preserve
">Quare in præſenti exem
<
lb
/>
plo, detracta vnitate ex denominante progreſſionis, ſupererit tantummodo dimi-
<
lb
/>
dium, quo diuiſo .19. proueniet .38. qui numerus æqualis erit ſummæ
<
reg
norm
="
reliquorum
"
type
="
context
">reliquorũ</
reg
>
<
lb
/>
omnium terminorum, cui coniuncto vltimo termino .27. dabitur ſumma quæſita .65.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s916
"
xml:space
="
preserve
">Pro cuius ſpeculatione, quatuor termini ſignificentur, quatuor lineis
<
var
>.m.s</
var
>
:
<
var
>f.r</
var
>
:
<
var
>c.a.
<
lb
/>
b.i.</
var
>
primus autem terminus
<
var
>.m.s.</
var
>
ex vltimo
<
var
>.b.i.</
var
>
detrahatur,
<
reg
norm
="
reſiduumque
"
type
="
simple
">reſiduumq́;</
reg
>
ſit
<
var
>.n.i.</
var
>
& ex
<
lb
/>
ſecundo
<
var
>.f.r.</
var
>
cuius reſiduum ſit
<
var
>.o.r.</
var
>
proportio verò progreſſionis ea ſit, quæ
<
var
>.g.h.</
var
>
ad
<
var
>.
<
lb
/>
y.</
var
>
quo vnitas repræſentatur (ex quo ſic ſe habebit
<
var
>.g.h.</
var
>
ad
<
var
>.y.</
var
>
vt
<
var
>.f.r.</
var
>
ad
<
var
>.m.s.</
var
>
) qua
<
var
>.y.</
var
>
de
<
lb
/>
tracta ex
<
var
>.g.h.</
var
>
ſuperſit
<
var
>.h</
var
>
. </
s
>
<
s
xml:id
="
echoid-s917
"
xml:space
="
preserve
">Tum erecta
<
lb
/>
cogitetur linea
<
var
>.n.u.x.</
var
>
indefinita per
<
lb
/>
<
figure
xlink:label
="
fig-0079-01
"
xlink:href
="
fig-0079-01a
"
number
="
107
">
<
image
file
="
0079-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0079-01
"/>
</
figure
>
pendicularis
<
var
>.b.i.</
var
>
à puncto
<
var
>.n.</
var
>
quę diui
<
lb
/>
datur in puncto
<
var
>.x.</
var
>
ita vt
<
var
>.n.x.</
var
>
æqualis
<
lb
/>
ſit vnitati
<
var
>.y.</
var
>
& in puncto
<
var
>.u.</
var
>
ita. vt
<
var
>.n.
<
lb
/>
u.</
var
>
æqualis ſit
<
var
>.h.</
var
>
ex quo eadem erit
<
lb
/>
proportio
<
var
>.n.u.</
var
>
ad
<
var
>.n.x.</
var
>
vt
<
var
>.h.</
var
>
ad
<
var
>.y.</
var
>
<
reg
norm
="
nem- pe
"
type
="
context
">nẽ-
<
lb
/>
pe</
reg
>
<
var
>.o.r.</
var
>
ad
<
var
>.m.s</
var
>
. </
s
>
<
s
xml:id
="
echoid-s918
"
xml:space
="
preserve
">Nam cú ſic ſe habeat
<
var
>.
<
lb
/>
f.r.</
var
>
ad
<
var
>.m.s.</
var
>
hoc eſt ad
<
var
>.f.o.</
var
>
vt
<
var
>.g.h.</
var
>
ad
<
var
>.y</
var
>
<
lb
/>
hoc eſt ad
<
var
>.g.</
var
>
permutando
<
reg
norm
="
quoque
"
type
="
simple
">quoq;</
reg
>
ſic
<
lb
/>
ſe habebit
<
var
>.f.r.</
var
>
ad
<
var
>.g.h.</
var
>
vt
<
var
>.f.o.</
var
>
ad
<
var
>.g</
var
>
. </
s
>
<
s
xml:id
="
echoid-s919
"
xml:space
="
preserve
">Ita
<
lb
/>
que ex .19. quinti
<
var
>.o.r.</
var
>
ad
<
var
>.h.</
var
>
vt
<
var
>.f.r.</
var
>
ad
<
var
>.g.h.</
var
>
ex quo ex .11. eiuſdem
<
var
>.o.r.</
var
>
ad
<
var
>.h.</
var
>
vt
<
var
>.f.o.</
var
>
ad </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>