Viviani, Vincenzo, De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei
page |< < (56) of 347 > >|
8056
PROBL. XIV. PROP. XXIX.
Datæ portioni circuli, vel Ellipſis, per eius verticem MAXI-
MAM Parabolæ portionem inſcribere;
& è contra.
Datæ portioni Parabolæ per eius verticem, cum dato recto,
quod excedat rectum datæ Parabolæ, vel cum dato tranſuerſo,
quod maius ſit diametro datæ portionis MINIMAM Ellipſis por-
tionem circumſcribere.
SIt data circuli, aut Ellipſis portio ABC, cuius diameter ſit BE, baſis AC.
Oporter per eius verticem B, _MAXIMAM_ Parabolæ portionem inſcri-
bere.
Sit BF tranſuerſum latus dati circuli, vel
50[Figure 50] Ellipſis, BG rectum, &
FG regula, cui pro-
ducta AE occurrat in H, &
per H agatur LHI
ipſi BF ęquidiſtans, &
cum recto BI, per ver-
ticem B adſcribatur portioni ADBC 115. huius. bole AMBC, quæ per extrema A, C 221. Co-
roll. 19. h.
ſibit, ac datæ portioni ſupra baſim AC erit
inſcripta, &
erit _MAXIMA_: quoniam, quæ
adſcribitur cum recto, quod minus ſit BI mi-
nor eſt ipſa AMBC, quæ verò cum 332. Co-
roll. prop.
19. huius.
quod excedat BI, veltota cadit extra Ellipſis
portionem ADB, ſinempe eius rectum 4420. h. idem cum recto BG, &
eo magis ſi ipſum ex-
cedat;
vel ad minus ſecat datam portionem ſupra baſim AC, ſi Parabolę re-
ctum cadat inter I, &
G, vt in N. Nam eius regula ex N ducta 551. Co-
roll. 19. h.
ter ipſi IH omninò ſecat Ellipſis regulam HG ſupra baſim AC.
Quare Pa-
rabolæ portio AMBC eſt _MAXIMA_ inſcripta quæſita.
Quod primò, & c.
Iam ſit data Parabolæ portio AMBC, cuius rectum BI, regula IL, diame-
ter BE, baſis AC, &
per eius verticem B oporteat _MINIMAM_ Ellipſis por-
tionem ei circumſcribere cum dato recto BG, quod excedat rectum datæ
portionis.
Conueniat applicata AE cum regula IL in H, iunctaq; GH, & producta,
occurrat portionis diametro in F (ſecans enim vnam parallelarum IH, ſecat
alteram BE:)
cum tranſuerſo autem BF, ac dato recto BG adſcribatur 667. huius. B Ellipſis ADBC, quæ datę Parabolæ AMB occurret in A, & C, & 771. Co-
roll. prop.
19. huius.
circumſcripta, quàm dico eſſe _MINIMAM_.
Nam Ellipſis quæ adſcribitur
per B, cum eodem recto BG, ſed cum tranſuerſo, quod excedat BF, maior
eſt ipſa ADB;
quæ verò adſcribitur cum tranſuerſo, quod minus ſit 884. Co-
roll. prop.
19. huius.
BF, eſt quidem minor eadem ADB, ſed omnino ſecat Parabolen 99ibidem. ſupra baſim AC, cum &
ipſarum regulę ſe mutuò ſecent ſupra eandem AC. 10101. Corol.
19. huius.
Quare Ellipſis portio ADBC eſt _MINIMA_ circumſcripta quæſita cum dato
recto BG.
Quod ſecundò, & c.
Sit tandem circumſcribenda datæ portioni Parabolicæ AMB

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index