Theodosius <Bithynius>; Clavius, Christoph, Theodosii Tripolitae Sphaericorum libri tres

Page concordance

< >
Scan Original
51 39
52 40
53 41
54 42
55 43
56 44
57 45
58 46
59 47
60 48
61 49
62 50
63 51
64 52
65 53
66 54
67 55
68 56
69 57
70 58
71 59
72 60
73 61
74 62
75 63
76 64
77 65
78 66
79 67
80 68
< >
page |< < (68) of 532 > >|
8068 cunferentia A F B, in F, in partes inæquales, & ſit F B, minor. Ex F, demitta-
tur in planum circuli A C B D, perpendicularis F L, quæ ad partes ſegmenti
A D B, cadet, propterea quod ſegmentum A F B, ad ſegmentum A D C, eſt
inclinatum, ita vt punctum L, ſit vel intra ſegmentum A D B, vel extra, vel
certe in ipſa circunferentia A D B.
Per centrum autem E, & punctum L, dia-
meter agatur C D, &
ex F, in circunferentiam A C B, plurimæ rectæ cadant
F B, F G, &
c. Dico omnium minimam eſſe F B; & F G, minorem quàm F H:
omnium autem maximam eſſe F C: Item F A, eſſe omnium minimam, quæ ex
F, in circunferentiam A C, cadunt;
& F I, minorem quàm F K. Ducantur ex
L, rectæ lineæ L B, L G, L H, L A, L I, L K, eruntque omnes anguli ad L,
quos facit perpendicularis F L, recti, ex defin.
3. lib. 11. Eucl.
88[Figure 88]
Quoniam igitur recta L D, eſt omnium minima, (hæc autem linea nihil eſt om
117. vel 8. vel
15. tertil.
nino in ea figura, vbi punctum L, cadit in D.)
& L B, minor, quàm L G, L H,
L C, L K, L I, L A, &
omnium maxima L C, & c. demonſtrabimus, vt in præ-
227. vel 8. vel
15. tertij. &
47. primi.
cedenti, rectam F B, eſſe omnium minimam, &
F G, minorem quàm F H: Item
F C, omnium maximam, &
F A, minimam omnium ex F, in circunferentiam
A C, cadentium;
& F I, minorem quàm F K. Si igitur recta linea ſecans circu-
lum, &
c. Quod erat oſtendendum.
THEOREMA 3. PROPOS. 3.
SI in ſphæra duo circuli maximi ſe mutuo ſe-
cent, ab eorum verò vtroque æquales circunfe-
rentiæ ſumantur vtrinque à puncto, in quo ſe ſe-
cant:
Rectæ lineæ, quæ extrema puncta circunfe-
rentiarum connectunt ad eaſdem partes, æquales
inter ſe ſunt.
IN ſphæra duo circuli maximi A B C, D B E, ſe mutuo ſecent in B, & in
vno quoque vtrinque à B, ſumantur duo arcus æquales B A, B C, &
B D, B

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index