Marci of Kronland, Johannes Marcus
,
De proportione motus, seu regula sphygmica ad celeritatem et tarditatem pulsuum
,
1639
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 129
>
81
82
83
84
85
86
87
88
89
90
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 129
>
page
|<
<
of 129
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
id
="
N10308
">
<
subchap1
id
="
N1301D
">
<
p
id
="
N13040
"
type
="
main
">
<
s
id
="
N13042
">
<
pb
xlink:href
="
062/01/081.jpg
"/>
datur ergo ex linea
<
emph
type
="
italics
"/>
tq
<
emph.end
type
="
italics
"/>
productà linea
<
emph
type
="
italics
"/>
tx
<
emph.end
type
="
italics
"/>
æqualis lineæ
<
emph
type
="
italics
"/>
p
<
lb
/>
u,
<
emph.end
type
="
italics
"/>
& ex puncto
<
emph
type
="
italics
"/>
p,
<
emph.end
type
="
italics
"/>
interuallo autem
<
emph
type
="
italics
"/>
px
<
emph.end
type
="
italics
"/>
deſcribatur arcus
<
lb
/>
<
emph
type
="
italics
"/>
xy,
<
emph.end
type
="
italics
"/>
<
expan
abbr
="
connectanturq́
">connectanturque</
expan
>
; linea
<
emph
type
="
italics
"/>
px
<
emph.end
type
="
italics
"/>
: dico quadratum
<
emph
type
="
italics
"/>
py
<
emph.end
type
="
italics
"/>
eſſe
<
lb
/>
motum mixtum & duratione æqualem motui
<
emph
type
="
italics
"/>
pq. pr
<
emph.end
type
="
italics
"/>
ſi
<
lb
/>
mul ſumptis. </
s
>
<
s
id
="
N130EF
">Quia enim quadratum
<
emph
type
="
italics
"/>
py
<
emph.end
type
="
italics
"/>
quadrato
<
emph
type
="
italics
"/>
px,
<
emph.end
type
="
italics
"/>
<
lb
/>
hoc autem duobus quadratis
<
emph
type
="
italics
"/>
pt.tx,
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
pu
<
emph.end
type
="
italics
"/>
eſt æquale: eſt
<
lb
/>
autem motus
<
emph
type
="
italics
"/>
pt
<
emph.end
type
="
italics
"/>
motui
<
emph
type
="
italics
"/>
pq,
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
pu
<
emph.end
type
="
italics
"/>
motui
<
emph
type
="
italics
"/>
pr
<
emph.end
type
="
italics
"/>
æqualis dura
<
lb
/>
tione per prop: 13. erit motus mixtus in
<
emph
type
="
italics
"/>
py
<
emph.end
type
="
italics
"/>
ſimiliter æ
<
lb
/>
qualis motibus
<
emph
type
="
italics
"/>
pq
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
pr
<
emph.end
type
="
italics
"/>
ſimul ſumptis. </
s
>
<
s
id
="
N1313B
">Quòd ſi verò
<
lb
/>
motus imperfectè mixtus & inæqualis
<
emph
type
="
italics
"/>
ab. ac
<
emph.end
type
="
italics
"/>
ab angulo
<
lb
/>
incipiat maiori aut minori quam recto
<
emph
type
="
italics
"/>
bac
<
emph.end
type
="
italics
"/>
: aſſuman
<
lb
/>
tur duo puncta
<
emph
type
="
italics
"/>
fg
<
emph.end
type
="
italics
"/>
æqualiter remota ab
<
emph
type
="
italics
"/>
a,
<
emph.end
type
="
italics
"/>
à quibus pro
<
lb
/>
tractæ lineæ perpendiculares
<
emph
type
="
italics
"/>
fh. gh
<
emph.end
type
="
italics
"/>
ſe interſecent in
<
emph
type
="
italics
"/>
h,
<
emph.end
type
="
italics
"/>
<
expan
abbr
="
e-ritq́
">e
<
lb
/>
ritque</
expan
>
; angulus
<
emph
type
="
italics
"/>
fhg
<
emph.end
type
="
italics
"/>
complementum anguli
<
emph
type
="
italics
"/>
bac,
<
emph.end
type
="
italics
"/>
& ſimul
<
lb
/>
ſumpti æquales duobus rectis. </
s
>
<
s
id
="
N1317E
">Deſcribatur ergo ex
<
emph
type
="
italics
"/>
h
<
emph.end
type
="
italics
"/>
<
lb
/>
arcus
<
emph
type
="
italics
"/>
fig,
<
emph.end
type
="
italics
"/>
<
expan
abbr
="
ſeceturq́
">ſeceturque</
expan
>
; bifariam in
<
emph
type
="
italics
"/>
i
<
emph.end
type
="
italics
"/>
eà ratione, ut ſinus
<
emph
type
="
italics
"/>
ik
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
ſinum
<
emph
type
="
italics
"/>
il
<
emph.end
type
="
italics
"/>
ſit, ut motus
<
emph
type
="
italics
"/>
ab
<
emph.end
type
="
italics
"/>
ad motum
<
emph
type
="
italics
"/>
ac:
<
emph.end
type
="
italics
"/>
dico lineam ex
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
<
lb
/>
productam in
<
emph
type
="
italics
"/>
i
<
emph.end
type
="
italics
"/>
eſſe lineam motus mixti. </
s
>
<
s
id
="
N131BF
">Producatur e
<
lb
/>
nim
<
emph
type
="
italics
"/>
fh
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
p,
<
emph.end
type
="
italics
"/>
<
expan
abbr
="
eritq́
">eritque</
expan
>
; angulus
<
emph
type
="
italics
"/>
fpa
<
emph.end
type
="
italics
"/>
complementum anguli
<
emph
type
="
italics
"/>
f
<
lb
/>
ap,
<
emph.end
type
="
italics
"/>
& angulus
<
emph
type
="
italics
"/>
aog
<
emph.end
type
="
italics
"/>
complementum anguli
<
emph
type
="
italics
"/>
oag
<
emph.end
type
="
italics
"/>
: duo er
<
lb
/>
go anguli
<
emph
type
="
italics
"/>
hpo. aog
<
emph.end
type
="
italics
"/>
hoc eſt
<
emph
type
="
italics
"/>
hop,
<
emph.end
type
="
italics
"/>
ſimul ſumpti ſunt æqua<l
<
lb
/>
les duobus angulis
<
emph
type
="
italics
"/>
fhi: thg
<
emph.end
type
="
italics
"/>
ſimul ſumptis, propterea
<
lb
/>
quód ſint complementa ejuſdem anguli
<
emph
type
="
italics
"/>
fag,
<
emph.end
type
="
italics
"/>
eſt autem
<
lb
/>
angulus
<
emph
type
="
italics
"/>
hop
<
emph.end
type
="
italics
"/>
externus major angulo
<
emph
type
="
italics
"/>
iho
<
emph.end
type
="
italics
"/>
interno quanti
<
lb
/>
tate anguli
<
emph
type
="
italics
"/>
bio,
<
emph.end
type
="
italics
"/>
angulus verò
<
emph
type
="
italics
"/>
iph
<
emph.end
type
="
italics
"/>
internus minor </
s
>
</
p
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>