Marci of Kronland, Johannes Marcus, De proportione motus, seu regula sphygmica ad celeritatem et tarditatem pulsuum, 1639

List of thumbnails

< >
81
81
82
82
83
83
84
84
85
85
86
86
87
87
88
88
89
89
90
90
< >
page |< < of 129 > >|
    <archimedes>
      <text>
        <body>
          <chap id="N10308">
            <subchap1 id="N1301D">
              <p id="N13040" type="main">
                <s id="N13042">
                  <pb xlink:href="062/01/081.jpg"/>
                datur ergo ex linea
                  <emph type="italics"/>
                tq
                  <emph.end type="italics"/>
                productà linea
                  <emph type="italics"/>
                tx
                  <emph.end type="italics"/>
                æqualis lineæ
                  <emph type="italics"/>
                p
                  <lb/>
                u,
                  <emph.end type="italics"/>
                & ex puncto
                  <emph type="italics"/>
                p,
                  <emph.end type="italics"/>
                interuallo autem
                  <emph type="italics"/>
                px
                  <emph.end type="italics"/>
                deſcribatur arcus
                  <lb/>
                  <emph type="italics"/>
                xy,
                  <emph.end type="italics"/>
                  <expan abbr="connectanturq́">connectanturque</expan>
                ; linea
                  <emph type="italics"/>
                px
                  <emph.end type="italics"/>
                : dico quadratum
                  <emph type="italics"/>
                py
                  <emph.end type="italics"/>
                eſſe
                  <lb/>
                motum mixtum & duratione æqualem motui
                  <emph type="italics"/>
                pq. pr
                  <emph.end type="italics"/>
                ſi­
                  <lb/>
                mul ſumptis. </s>
                <s id="N130EF">Quia enim quadratum
                  <emph type="italics"/>
                py
                  <emph.end type="italics"/>
                quadrato
                  <emph type="italics"/>
                px,
                  <emph.end type="italics"/>
                  <lb/>
                hoc autem duobus quadratis
                  <emph type="italics"/>
                pt.tx,
                  <emph.end type="italics"/>
                ſeu
                  <emph type="italics"/>
                pu
                  <emph.end type="italics"/>
                eſt æquale: eſt
                  <lb/>
                autem motus
                  <emph type="italics"/>
                pt
                  <emph.end type="italics"/>
                motui
                  <emph type="italics"/>
                pq,
                  <emph.end type="italics"/>
                &
                  <emph type="italics"/>
                pu
                  <emph.end type="italics"/>
                motui
                  <emph type="italics"/>
                pr
                  <emph.end type="italics"/>
                æqualis dura­
                  <lb/>
                tione per prop: 13. erit motus mixtus in
                  <emph type="italics"/>
                py
                  <emph.end type="italics"/>
                ſimiliter æ­
                  <lb/>
                qualis motibus
                  <emph type="italics"/>
                pq
                  <emph.end type="italics"/>
                &
                  <emph type="italics"/>
                pr
                  <emph.end type="italics"/>
                ſimul ſumptis. </s>
                <s id="N1313B">Quòd ſi verò
                  <lb/>
                motus imperfectè mixtus & inæqualis
                  <emph type="italics"/>
                ab. ac
                  <emph.end type="italics"/>
                ab angulo
                  <lb/>
                incipiat maiori aut minori quam recto
                  <emph type="italics"/>
                bac
                  <emph.end type="italics"/>
                : aſſuman­
                  <lb/>
                tur duo puncta
                  <emph type="italics"/>
                fg
                  <emph.end type="italics"/>
                æqualiter remota ab
                  <emph type="italics"/>
                a,
                  <emph.end type="italics"/>
                à quibus pro­
                  <lb/>
                tractæ lineæ perpendiculares
                  <emph type="italics"/>
                fh. gh
                  <emph.end type="italics"/>
                ſe interſecent in
                  <emph type="italics"/>
                h,
                  <emph.end type="italics"/>
                  <expan abbr="e-ritq́">e­
                    <lb/>
                  ritque</expan>
                ; angulus
                  <emph type="italics"/>
                fhg
                  <emph.end type="italics"/>
                complementum anguli
                  <emph type="italics"/>
                bac,
                  <emph.end type="italics"/>
                & ſimul
                  <lb/>
                ſumpti æquales duobus rectis. </s>
                <s id="N1317E">Deſcribatur ergo ex
                  <emph type="italics"/>
                h
                  <emph.end type="italics"/>
                  <lb/>
                arcus
                  <emph type="italics"/>
                fig,
                  <emph.end type="italics"/>
                  <expan abbr="ſeceturq́">ſeceturque</expan>
                ; bifariam in
                  <emph type="italics"/>
                i
                  <emph.end type="italics"/>
                eà ratione, ut ſinus
                  <emph type="italics"/>
                ik
                  <emph.end type="italics"/>
                ad
                  <lb/>
                ſinum
                  <emph type="italics"/>
                il
                  <emph.end type="italics"/>
                ſit, ut motus
                  <emph type="italics"/>
                ab
                  <emph.end type="italics"/>
                ad motum
                  <emph type="italics"/>
                ac:
                  <emph.end type="italics"/>
                dico lineam ex
                  <emph type="italics"/>
                a
                  <emph.end type="italics"/>
                  <lb/>
                productam in
                  <emph type="italics"/>
                i
                  <emph.end type="italics"/>
                eſſe lineam motus mixti. </s>
                <s id="N131BF">Producatur e­
                  <lb/>
                nim
                  <emph type="italics"/>
                fh
                  <emph.end type="italics"/>
                in
                  <emph type="italics"/>
                p,
                  <emph.end type="italics"/>
                  <expan abbr="eritq́">eritque</expan>
                ; angulus
                  <emph type="italics"/>
                fpa
                  <emph.end type="italics"/>
                complementum anguli
                  <emph type="italics"/>
                f
                  <lb/>
                ap,
                  <emph.end type="italics"/>
                & angulus
                  <emph type="italics"/>
                aog
                  <emph.end type="italics"/>
                complementum anguli
                  <emph type="italics"/>
                oag
                  <emph.end type="italics"/>
                : duo er­
                  <lb/>
                go anguli
                  <emph type="italics"/>
                hpo. aog
                  <emph.end type="italics"/>
                hoc eſt
                  <emph type="italics"/>
                hop,
                  <emph.end type="italics"/>
                ſimul ſumpti ſunt æqua<l
                  <lb/>
                les duobus angulis
                  <emph type="italics"/>
                fhi: thg
                  <emph.end type="italics"/>
                ſimul ſumptis, propterea
                  <lb/>
                quód ſint complementa ejuſdem anguli
                  <emph type="italics"/>
                fag,
                  <emph.end type="italics"/>
                eſt autem
                  <lb/>
                angulus
                  <emph type="italics"/>
                hop
                  <emph.end type="italics"/>
                externus major angulo
                  <emph type="italics"/>
                iho
                  <emph.end type="italics"/>
                interno quanti­
                  <lb/>
                tate anguli
                  <emph type="italics"/>
                bio,
                  <emph.end type="italics"/>
                angulus verò
                  <emph type="italics"/>
                iph
                  <emph.end type="italics"/>
                internus minor </s>
              </p>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>