1lem eſſe ipſi SN. Quoniam igitur OT NS ſunt ęquales, iti
demquè TN SM æquales, erit ON ipſi NM æqualis. ea
demquè ratione oſtendetur OP ęqualem eſſe ipſi ON. vn
de colligitur lineas MN NO OP inter centra exiſtentes in
rerſe ęquales eſſe.
demquè TN SM æquales, erit ON ipſi NM æqualis. ea
demquè ratione oſtendetur OP ęqualem eſſe ipſi ON. vn
de colligitur lineas MN NO OP inter centra exiſtentes in
rerſe ęquales eſſe.
Poſtremò quoniam parallelogramma AK GF EL HD
ſunt inuicem æqualia, & numero paria, centraquè grauitatis
ſunt in recta linea poſita. lineęquè MN NO OP inter cen
tra ſunt ęquales, magnitudinis ex omnibus AK GF EL HD
magnitudinibus compoſitæ centrum grauitatis eſt in linea
MP bifariam diuiſa. Et quoniam MN eſt æqualis ipſi OP,
punctum, quod bifariam diuidit MP cadet in linea NO.
centrum ergo grauitatis omnium magnitudinum AK GF
EL HD, hoc eſt parallelogrammi AD eſt in linea NO, quę
coniungit centra ſpatiorum mediorum GF EL. quę quidem
omnia oſtendere oportebat.
ſunt inuicem æqualia, & numero paria, centraquè grauitatis
ſunt in recta linea poſita. lineęquè MN NO OP inter cen
tra ſunt ęquales, magnitudinis ex omnibus AK GF EL HD
magnitudinibus compoſitæ centrum grauitatis eſt in linea
MP bifariam diuiſa. Et quoniam MN eſt æqualis ipſi OP,
punctum, quod bifariam diuidit MP cadet in linea NO.
centrum ergo grauitatis omnium magnitudinum AK GF
EL HD, hoc eſt parallelogrammi AD eſt in linea NO, quę
coniungit centra ſpatiorum mediorum GF EL. quę quidem
omnia oſtendere oportebat.
2.cor.
quin
tæ huius.
tæ huius.
Quoniam autem centrum grauitatis parallelogrammi AD
eſt in linea NO, & in linea MP bifariam diuiſa; non repu
gnare videtur, quin inferri poſſit, hoc centrum eſſe in puncto
T, in linea EF exiſtente. Quòd tamen falſum eſt. nam poſ
ſet quidem concludi centru eſſe in medio lineę NO (ſiquidem
eſt in medio lineę MP, vt dictum eſt) ſed non in puncto T; ex demom
ſtratione enim oſtenditur NS æqualem eſſe ipſi TO. at verò
NT ęqualem eſſe ipſi TO, nullo modo demonſtrari poteſt;
niſi ſupponeremus centra grauitatis MNOP in parallelogra
mis ita ſe habere, vt MQ MR, & MR RN, & RN NT &
NT TO, &c. inter ſe ęquales eſſent. quod nullo modo ſup
poni poteſt nam hoc modo centra grauitatis parallelogram
morum AK GF &c. eſſent in lineis, quę bifariam ſecant op
poſita latera. eſſent quippè in lineis à punctis MN OP du
ctisipſis AC GK EF &c. æquidiftantibus, quæ oppoſita la
tera AG CK, GE KF, EH FL, &c. bifariam ſecarent. quod
eſt id, quod Archimedes demonſtrare in ſe〈que〉nti nititur. quod
quidem in cauſa eſt, vt demonſtratione ad impoſſibile id de
ducat. ſuppoſuimus autem (vt pareſt) parallelogramma
eſt in linea NO, & in linea MP bifariam diuiſa; non repu
gnare videtur, quin inferri poſſit, hoc centrum eſſe in puncto
T, in linea EF exiſtente. Quòd tamen falſum eſt. nam poſ
ſet quidem concludi centru eſſe in medio lineę NO (ſiquidem
eſt in medio lineę MP, vt dictum eſt) ſed non in puncto T; ex demom
ſtratione enim oſtenditur NS æqualem eſſe ipſi TO. at verò
NT ęqualem eſſe ipſi TO, nullo modo demonſtrari poteſt;
niſi ſupponeremus centra grauitatis MNOP in parallelogra
mis ita ſe habere, vt MQ MR, & MR RN, & RN NT &
NT TO, &c. inter ſe ęquales eſſent. quod nullo modo ſup
poni poteſt nam hoc modo centra grauitatis parallelogram
morum AK GF &c. eſſent in lineis, quę bifariam ſecant op
poſita latera. eſſent quippè in lineis à punctis MN OP du
ctisipſis AC GK EF &c. æquidiftantibus, quæ oppoſita la
tera AG CK, GE KF, EH FL, &c. bifariam ſecarent. quod
eſt id, quod Archimedes demonſtrare in ſe〈que〉nti nititur. quod
quidem in cauſa eſt, vt demonſtratione ad impoſſibile id de
ducat. ſuppoſuimus autem (vt pareſt) parallelogramma