Clavius, Christoph
,
Geometria practica
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
[Note]
Page: 78
[Note]
Page: 78
[Note]
Page: 78
[Note]
Page: 78
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 79
[Note]
Page: 80
[Note]
Page: 80
[Note]
Page: 80
[Note]
Page: 82
[Note]
Page: 82
[Note]
Page: 82
[Note]
Page: 82
[Note]
Page: 82
[Note]
Page: 82
[Note]
Page: 82
[Note]
Page: 82
[Note]
Page: 83
[Note]
Page: 83
[Note]
Page: 83
[Note]
Page: 83
[Note]
Page: 83
[Note]
Page: 83
[Note]
Page: 83
[Note]
Page: 83
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(57)
of 450
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div120
"
type
="
section
"
level
="
1
"
n
="
51
">
<
p
>
<
s
xml:id
="
echoid-s2322
"
xml:space
="
preserve
">
<
pb
o
="
57
"
file
="
087
"
n
="
87
"
rhead
="
LIBER SECVNDVS.
"/>
ſeruationis GDF, & </
s
>
<
s
xml:id
="
echoid-s2323
"
xml:space
="
preserve
">diſtantiam DF, quam per angulum obſeruationis GEF, & </
s
>
<
s
xml:id
="
echoid-s2324
"
xml:space
="
preserve
">
<
lb
/>
diſtantiam EF. </
s
>
<
s
xml:id
="
echoid-s2325
"
xml:space
="
preserve
">Vtroque enim modo inuenta eſt altitudo GF.</
s
>
<
s
xml:id
="
echoid-s2326
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div121
"
type
="
section
"
level
="
1
"
n
="
52
">
<
head
xml:id
="
echoid-head55
"
xml:space
="
preserve
">COROLLARIVM II.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2327
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Perspicvvm</
emph
>
etiam eſt, ſi G, ſit cacumen alicuius montis, nos per hoc
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-087-01
"
xlink:href
="
note-087-01a
"
xml:space
="
preserve
">Altitudo mõ-
<
lb
/>
tis quo pacto
<
lb
/>
inueſtigetur.</
note
>
problema 1. </
s
>
<
s
xml:id
="
echoid-s2328
"
xml:space
="
preserve
">eius altitudinem poſſe metiri per duas ſtationes D, E, in plano fa-
<
lb
/>
ctas: </
s
>
<
s
xml:id
="
echoid-s2329
"
xml:space
="
preserve
">ſi nimirum prius inueſtigetur recta D F, vel E F, ab oculo menſoris vſque
<
lb
/>
ad perpendicularem GF, quæ à cacumine G, in planum Horizontis cadit, etiãſi
<
lb
/>
eius extremum F, non videamus.</
s
>
<
s
xml:id
="
echoid-s2330
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2331
"
xml:space
="
preserve
">ALTITVDINEM inacceſſibilem, quando diſtantia à loco mẽ-
<
lb
/>
ſoris ad baſem altitudinis ignota eſt, per duas ſtationes in plano factas,
<
lb
/>
per quadrantem dimetiri. </
s
>
<
s
xml:id
="
echoid-s2332
"
xml:space
="
preserve
">Atque hinc diſtantiam quoque ipſam erue-
<
lb
/>
re, etiam ſi extremus eius terminus non cernatur.</
s
>
<
s
xml:id
="
echoid-s2333
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div123
"
type
="
section
"
level
="
1
"
n
="
53
">
<
head
xml:id
="
echoid-head56
"
xml:space
="
preserve
">PROBLEMA II.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2334
"
xml:space
="
preserve
">1. </
s
>
<
s
xml:id
="
echoid-s2335
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Sit</
emph
>
inquirenda altitudo AB, ſiue ea turris ſit, ſiue mons, ſiue aliquid ali-
<
lb
/>
ud, licetnon cernatur eius perpendiculi infimus terminus B, vt in omni monte
<
lb
/>
contingit: </
s
>
<
s
xml:id
="
echoid-s2336
"
xml:space
="
preserve
">planum autem, cui perpendicularis eſt altitudo, ſit CB. </
s
>
<
s
xml:id
="
echoid-s2337
"
xml:space
="
preserve
">Statura mẽ-
<
lb
/>
ſoris D E. </
s
>
<
s
xml:id
="
echoid-s2338
"
xml:space
="
preserve
">Ducta autem cogitatione per E, ipſi CB, parallela GF, fiat prima ſta-
<
lb
/>
tio in D, propinquior, ſecunda vero in G, remotior, vt differentia ſtationum ſit
<
lb
/>
GE. </
s
>
<
s
xml:id
="
echoid-s2339
"
xml:space
="
preserve
">Deinde per radios viſuales EA, GA, ad verticem A, directos diligenter ob-
<
lb
/>
ſeruentur anguli AEF, AGF, ſiue per quadrantem pendulum, vt Num. </
s
>
<
s
xml:id
="
echoid-s2340
"
xml:space
="
preserve
">1. </
s
>
<
s
xml:id
="
echoid-s2341
"
xml:space
="
preserve
">pro-
<
lb
/>
blematis præcedentis do cuimus, ſiue per ſtabilem, vt Num. </
s
>
<
s
xml:id
="
echoid-s2342
"
xml:space
="
preserve
">5. </
s
>
<
s
xml:id
="
echoid-s2343
"
xml:space
="
preserve
">eiuſdem proble-
<
lb
/>
matis præcepimus. </
s
>
<
s
xml:id
="
echoid-s2344
"
xml:space
="
preserve
">Eodem enim ſemper modo dicti anguli obſeruantur, quan-
<
lb
/>
do è loco inferiori altitu dinis faſtigium inſpicitur. </
s
>
<
s
xml:id
="
echoid-s2345
"
xml:space
="
preserve
">Cogitetur quo que ducta HI,
<
lb
/>
<
figure
xlink:label
="
fig-087-01
"
xlink:href
="
fig-087-01a
"
number
="
23
">
<
image
file
="
087-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/087-01
"/>
</
figure
>
ipſi G F, parallela, vt demiſſæ perpendiculares H L, I K,
<
note
symbol
="
a
"
position
="
right
"
xlink:label
="
note-087-02
"
xlink:href
="
note-087-02a
"
xml:space
="
preserve
">34. prim.</
note
>
parallelogrammo LI, ſint æquales, pro ſinubus totis: </
s
>
<
s
xml:id
="
echoid-s2346
"
xml:space
="
preserve
">quo-
<
lb
/>
rum tangentes ſunt EK, GL, angulis, I, H, qui complemen-
<
lb
/>
ta ſunt angulorum obſeruationum E, G, debitæ. </
s
>
<
s
xml:id
="
echoid-s2347
"
xml:space
="
preserve
">Et quo-
<
lb
/>
niam angulus G A F, maior eſt angulo E A F, eſt que
<
note
symbol
="
b
"
position
="
right
"
xlink:label
="
note-087-03
"
xlink:href
="
note-087-03a
"
xml:space
="
preserve
">29. primi.</
note
>
angulus G H L, & </
s
>
<
s
xml:id
="
echoid-s2348
"
xml:space
="
preserve
">poſteriori angulus E I K, æqualis: </
s
>
<
s
xml:id
="
echoid-s2349
"
xml:space
="
preserve
">erit
<
lb
/>
quo que GHL, maior quam EIK, ideo que tãgens G L, ma-
<
lb
/>
ior Tangente EK, quòd ſinus toti H L, I K, æquales ſint. </
s
>
<
s
xml:id
="
echoid-s2350
"
xml:space
="
preserve
">Ab-
<
lb
/>
ſcindatur LM, ipſi EK, æqualis, vt GM, ſit differẽtia Tangẽ-
<
lb
/>
tium G L, E K, Et quia eſt vt G L, ad L H, ita G F, ad F A, erit permutando,
<
note
symbol
="
c
"
position
="
right
"
xlink:label
="
note-087-04
"
xlink:href
="
note-087-04a
"
xml:space
="
preserve
">4. ſexti.</
note
>
GL, ad GF, ita LH, vel IK, ad FA; </
s
>
<
s
xml:id
="
echoid-s2351
"
xml:space
="
preserve
"> Vtautem IK, ad F A, ita quoque eſt EK,
<
note
symbol
="
d
"
position
="
right
"
xlink:label
="
note-087-05
"
xlink:href
="
note-087-05a
"
xml:space
="
preserve
">4. ſexti &
<
lb
/>
permutando</
note
>
EF. </
s
>
<
s
xml:id
="
echoid-s2352
"
xml:space
="
preserve
">Igitur erit, vttota GL, ad totam GF, ita EK, vel LM, ex GL, ablata, ad EF,
<
lb
/>
ex GF, ablatam: </
s
>
<
s
xml:id
="
echoid-s2353
"
xml:space
="
preserve
"> ac proinde erit etiam vt GM, ex GL, reliqua ad G E, ex G
<
note
symbol
="
e
"
position
="
right
"
xlink:label
="
note-087-06
"
xlink:href
="
note-087-06a
"
xml:space
="
preserve
">19. quinti</
note
>
reliquam, ita tota G L, ad totam G F, hoc eſt, ita L H, ſinus totus, a d F A.</
s
>
<
s
xml:id
="
echoid-s2354
"
xml:space
="
preserve
">
<
note
symbol
="
f
"
position
="
right
"
xlink:label
="
note-087-07
"
xlink:href
="
note-087-07a
"
xml:space
="
preserve
">4 ſexti &
<
lb
/>
permutando.</
note
>
Quamobrem ſi fiat.</
s
>
<
s
xml:id
="
echoid-s2355
"
xml:space
="
preserve
"/>
</
p
>
<
note
style
="
it
"
position
="
right
"
xml:space
="
preserve
">
<
lb
/>
Vt G M, differentia Tangentium \\ G L, E K, complementorum an- \\ gulorum obſeruationum # ad G E, diffe- \\ rentiam ſt a- \\ tionum. # ita L H, \\ ſin{us} i
<
unsure
/>
o- \\ t{us}. # ad FA,
<
lb
/>
</
note
>
</
div
>
</
text
>
</
echo
>