Baliani, Giovanni Battista, De motv natvrali gravivm solidorvm et liqvidorvm

List of thumbnails

< >
81
81
82
82
83
83
84
84
85
85
86
86
87
87
88
88
89
89
90
90
< >
page |< < of 177 > >|
    <archimedes>
      <text>
        <body>
          <chap type="bk">
            <subchap1 n="2" type="proposition">
              <subchap2 n="2" type="proof">
                <pb xlink:href="064/01/087.jpg"/>
                <p type="main">
                  <s id="s.000624">At AB est aequalis ipsi BE per constructionem.</s>
                </p>
                <p type="main">
                  <s id="s.000625">Ergo motus per BD fit diuturnitate AB. </s>
                  <s id="s.000626">Quod
                    <lb/>
                  etc.</s>
                </p>
              </subchap2>
              <subchap2 type="corollary">
                <p type="head">
                  <s id="s.000627">Corollarium I.</s>
                </p>
                <p type="main">
                  <s id="s.000628">Hinc sequitur, quod in quolibet puncto infra
                    <lb/>
                  B est par impetus, fuerit ne motus per C
                    <lb/>
                  D aut per ABD, cum fuerit par impetus in B
                    <arrow.to.target n="marg159"/>
                  .</s>
                </p>
                <p type="margin">
                  <s id="s.000629">
                    <margin.target id="marg159"/>
                  Per 12. secundi huius.</s>
                </p>
              </subchap2>
              <subchap2 type="corollary">
                <p type="head">
                  <s id="s.000630">Corollarium II.</s>
                </p>
                <p type="main">
                  <s id="s.000631">Quotiescunque CE est media inter CB, CD,
                    <lb/>
                  etiamsi motus praecedens fuerit per AB;
                    <lb/>
                  BE est diuturnitas motus per BD.</s>
                </p>
              </subchap2>
              <subchap2 type="corollary">
                <p type="head">
                  <s id="s.000632">Corollarium III.</s>
                </p>
                <p type="main">
                  <s id="s.000633">Idem sequitur etiamsi AB noni esset perpendicuĀ­
                    <lb/>
                  laris, nam probatur eodem pacto.</s>
                </p>
              </subchap2>
              <subchap2 type="corollary">
                <p type="head">
                  <s id="s.000634">Corollarium IV.</s>
                </p>
                <p type="main">
                  <s id="s.000635">Sequitur etiam, quod si datis AB, & CB,
                    <lb/>
                  fiat AB lineae aequalis BE, & ad CB, CE
                    <lb/>
                  fiat tertia CD; mobile cadens aC, seu ab A,
                    <lb/>
                  movebitur super BD aequali tempore quo per AB.</s>
                </p>
                <p type="main">
                  <s id="s.000636">Et notandum pr. quod BD semper excedit duĀ­
                    <lb/>
                  plum ipsius AB, quia excedit duplum rectae BE.</s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>