8983OPTICAE LIBER III.
ergo àngulus k a q eſt maior angulo k b q.
Ergo remotio lineę a k ab axe a q, eſt maior quã rem otio
lineæ b k ab axe b q: ſed differẽtia inter has duas remotiones eſt modica: differẽtia enim inter duos
angulos k a q, k b q eſt parua, & indiuiduum, quod eſt apud punctum k, uidetur ambobus uiſibus u-
num, quando axes concurrerint in indiuiduo, quod eſt a pud punctum q. Et duæ lineæ a k, b k, ſunt
æ quidiſtantes duobus radijs exeuntibus ad indiuiduũ, quod eſt a pud punctũ k, cum duo axes con-
currerint in indiuiduo, quod eſt apud q. Similiter diſpoſitio indiuidui, quod eſt apud punctum r, ſci-
tur: quoniam radij exeuntes ad ipſum, erũt in uerticatione duarum linearum a r, b r, & uidebitur u-
num: & duo anguli r a q, r b q non maxim è differunt: & angulus k b r non habet ſenſibilem quantita
tem, quando punctum r fuerit ualde propinquũ puncto k. Declarabitur igitur ex hac diſpoſitione:
quòd uiſum, cuius diſpoſitio apud duos axes eſt una poſitio in parte, & remotio radiorum exeun-
tium ad ipſum à duobus uiſibus, non eſt maximè differens: illud uiſum uidebitur duobus uiſibus
unum. Anguli autem f a q, f b q ſunt diuerſi diuerſitate maxima: & indiuiduum, quod eſt apud pun-
ctum f, uidebitur duo: quoniã duo axes concurrent in indiuiduo, quod eſt apud punctum q. Decla-
rabitur igitur ex hac diſpoſitione, quòd uiſum, ad quod poſitio radiorum exeuntium à duobus uiſi-
bus eſt diuerſa in remotione à duobus axibus maxima diuerſitate, uidetur duo: licet poſitio eius in
reſpectu duorum axium eadem eſt poſitio in parte. Poſitio autem lineæ h q z in reſpectu axium
duorum uiſuum, eſt poſitio diuerſa in parte: radij etenim exeuntes ad partem h q à dextro uiſu,
ſunt ſiniſtri ab axe a q: radij autem exeuntes ad hanc partem à ſiniſtro uiſu, ſunt dextri ab axe b q:
radij uerò exeuntes ad partem q z à dextro uiſu, ſunt dextri ab axe a q: & radij exeuntes ad ipſam à
ſiniſtro uiſu, ſunt ſiniſtri ab axe b q: & radij qui exeunt ad ipſum, ſunt diuerſæ poſitionis in parte: &
remotio duorum radiorum exeuntium ad quodlibet punctum illius lineæ à duobus uiſibus, à duo-
bus axibus eſt æ qualis: & iſta linea, & omnia poſita ſuper ipſam, pręter indiuiduum poſitum in me-
dio, ſemper uidentur duo, cum duo axes concurrerint in indiuiduo poſito in medio. Declaratum
igitur eſt ex hac diſpoſitione, quòd uiſum, cuius poſitio in reſpectu duorum axium eſt diuerſa in
parte, ſemper uidetur duo: quamuis remotiones radiorum exeuntium ad ipſum à duobus uiſibus,
à duobus axibus ſint æquales. Remotiones enim quorumlibet duorum radiorum exeuntium à
duobus uiſibus ad aliquod punctum eius, erunt in duabus partibus diuerſis. Quapropter duæ for-
mæ cuiuslibet puncti eius inſtituentur in duobus punctis concauitatis communis nerui à duobus
lateribus centri. Et ſimiliter etiam eſt diſpoſitio utriuſque diametrorum. Quoniam radij exeuntes
ad utramlibet earum à uiſu ſequente ipſam, erunt à medio uiſus, & propinqui axi, & ſub axe, & ſu-
pra axem: & radij exeuntes ad ipſam à reliquo uiſu, erunt declinantes à reliquo axe: qui uerò à de-
xtro uiſu ad ſiniſtram diametrum, erunt ſiniſtri ab axe: qui autem exeunt à ſiniſtro uiſu ad dextram,
erunt dextri ab axe. Et formæ diametrorum iſtarum, & omnia puncta, & omnia poſita ſuper i-
pſas, uidentur duo, præter indiuiduum poſitum in medio, quando duo axes concurrerint in me-
dio indiuiduo.
lineæ b k ab axe b q: ſed differẽtia inter has duas remotiones eſt modica: differẽtia enim inter duos
angulos k a q, k b q eſt parua, & indiuiduum, quod eſt apud punctum k, uidetur ambobus uiſibus u-
num, quando axes concurrerint in indiuiduo, quod eſt a pud punctum q. Et duæ lineæ a k, b k, ſunt
æ quidiſtantes duobus radijs exeuntibus ad indiuiduũ, quod eſt a pud punctũ k, cum duo axes con-
currerint in indiuiduo, quod eſt apud q. Similiter diſpoſitio indiuidui, quod eſt apud punctum r, ſci-
tur: quoniam radij exeuntes ad ipſum, erũt in uerticatione duarum linearum a r, b r, & uidebitur u-
num: & duo anguli r a q, r b q non maxim è differunt: & angulus k b r non habet ſenſibilem quantita
tem, quando punctum r fuerit ualde propinquũ puncto k. Declarabitur igitur ex hac diſpoſitione:
quòd uiſum, cuius diſpoſitio apud duos axes eſt una poſitio in parte, & remotio radiorum exeun-
tium ad ipſum à duobus uiſibus, non eſt maximè differens: illud uiſum uidebitur duobus uiſibus
unum. Anguli autem f a q, f b q ſunt diuerſi diuerſitate maxima: & indiuiduum, quod eſt apud pun-
ctum f, uidebitur duo: quoniã duo axes concurrent in indiuiduo, quod eſt apud punctum q. Decla-
rabitur igitur ex hac diſpoſitione, quòd uiſum, ad quod poſitio radiorum exeuntium à duobus uiſi-
bus eſt diuerſa in remotione à duobus axibus maxima diuerſitate, uidetur duo: licet poſitio eius in
reſpectu duorum axium eadem eſt poſitio in parte. Poſitio autem lineæ h q z in reſpectu axium
duorum uiſuum, eſt poſitio diuerſa in parte: radij etenim exeuntes ad partem h q à dextro uiſu,
ſunt ſiniſtri ab axe a q: radij autem exeuntes ad hanc partem à ſiniſtro uiſu, ſunt dextri ab axe b q:
radij uerò exeuntes ad partem q z à dextro uiſu, ſunt dextri ab axe a q: & radij exeuntes ad ipſam à
ſiniſtro uiſu, ſunt ſiniſtri ab axe b q: & radij qui exeunt ad ipſum, ſunt diuerſæ poſitionis in parte: &
remotio duorum radiorum exeuntium ad quodlibet punctum illius lineæ à duobus uiſibus, à duo-
bus axibus eſt æ qualis: & iſta linea, & omnia poſita ſuper ipſam, pręter indiuiduum poſitum in me-
dio, ſemper uidentur duo, cum duo axes concurrerint in indiuiduo poſito in medio. Declaratum
igitur eſt ex hac diſpoſitione, quòd uiſum, cuius poſitio in reſpectu duorum axium eſt diuerſa in
parte, ſemper uidetur duo: quamuis remotiones radiorum exeuntium ad ipſum à duobus uiſibus,
à duobus axibus ſint æquales. Remotiones enim quorumlibet duorum radiorum exeuntium à
duobus uiſibus ad aliquod punctum eius, erunt in duabus partibus diuerſis. Quapropter duæ for-
mæ cuiuslibet puncti eius inſtituentur in duobus punctis concauitatis communis nerui à duobus
lateribus centri. Et ſimiliter etiam eſt diſpoſitio utriuſque diametrorum. Quoniam radij exeuntes
ad utramlibet earum à uiſu ſequente ipſam, erunt à medio uiſus, & propinqui axi, & ſub axe, & ſu-
pra axem: & radij exeuntes ad ipſam à reliquo uiſu, erunt declinantes à reliquo axe: qui uerò à de-
xtro uiſu ad ſiniſtram diametrum, erunt ſiniſtri ab axe: qui autem exeunt à ſiniſtro uiſu ad dextram,
erunt dextri ab axe. Et formæ diametrorum iſtarum, & omnia puncta, & omnia poſita ſuper i-
pſas, uidentur duo, præter indiuiduum poſitum in medio, quando duo axes concurrerint in me-
dio indiuiduo.
13. Viſibile medio unius uiſus rectè, reliquo obliquè oppoſitum, uidetur geminum. 103 p 4.
Idem II n.
Idem II n.
DEclarabitur igitur exhoc, quòd uiſum, quod in reſpectu alterius uiſus eſt oppoſitum medio
eius, in reſpectu autem reliqui eſt obliquum à medio, uidetur duo. Nam formæ puncti, quæ
inſtituitur in medio alterius uiſi, ueniet ad centrum: forma uerò puncti obliqui à medio re-
liqui uiſus, ueniet ad punctum aliud à centro, & obliquum à centro, ſecundum obliquationem pun
cti ſuperficiei uiſus.
eius, in reſpectu autem reliqui eſt obliquum à medio, uidetur duo. Nam formæ puncti, quæ
inſtituitur in medio alterius uiſi, ueniet ad centrum: forma uerò puncti obliqui à medio re-
liqui uiſus, ueniet ad punctum aliud à centro, & obliquum à centro, ſecundum obliquationem pun
cti ſuperficiei uiſus.
EX hac igitur experimentatione & expoſitione declaratur bene, quòd uiſum, in quo concur-
runt duo axes, ſemper uidetur unum: & quòd unum quod que uiſorum, etiam in quibus con-
currunt radij, qui ſunt conſimilis poſitionis in parte, inter quos non eſt maxima diuerſitas in
remotione à duobus axibus, uidetur etiam unum: & quòd uiſum, in quo concurrunt radij conſimi-
lis poſitionis in parte, & diuerſæ poſitionis in remotione à duobus axibus maxima diuerſitate, uide
tur duo: & quòd uiſum, quod comprehen ditur per radios diuerſæ poſitionis in parte, uidetur duo:
quamuis remotiones radiorum exeuntium ad ipſum à duobus axibus, ſunt ęquales: & quòd omnia
iſta erunt ſic: dum duo axes concurrent in uno uiſo. Et omnia uiſa aſſueta ſunt oppoſita ambo-
bus uiſibus, & ambo uiſus inſpiciunt ad quodlibet eorum. Ergo duo axes duorum uiſuum ſem-
per concurrunt in eis, & poſitio radiorum reſiduorum, qui concurrũt in communi puncto eorum,
eſt poſitio conſimilis in parte, & non differt in remotione à duobus axibus maxima differentia. Et
ideo quodlibet uiſibilium aſſuetorum uidetur ambobus uiſibus unum: & nullum uiſibilium uide-
tur duo, niſi rarò. Nullum enium uiſibiliũ uidetur duo, niſi cum cõpoſitio eius in reſpectu amborũ ui
fuũ fuerit diuerſa maxima diuerſitate, aut in parte, aut in remotione, aut in utroq; . Et poſitio unius
uiſi apud duos uiſus non diuerſatur quidẽ maxima diuerſitate, niſi rarò. Cauſſa igitur propter quã
unũquodq; uiſorũ aſſuetorũ uidetur unũ ambobus uiſibus, declarata eſt ratiõe & experientia. Et e-
tiã cũ experimẽtator abſtulerit indiuiduũ, quod eſt in medio tabulę, & inſpexerit mediũ ſectionis,
quę eſt in medio tabulę: & intuitus fuerit tũc lineas ſcriptas in tabula: inueniet duas diametros qua
tuor: & inueniet ſimul duas illarũ quatuor ꝓpinquas ſibi, & duas à ſe remotas: & etiã oẽs ſe ſecãtes
ſuperpunctũ mediũ, qđ eſt punctũ ſectiõis duarũ diametrorũ, qđ eſt ſuper axẽ cõmunẽ: & inueniet
runt duo axes, ſemper uidetur unum: & quòd unum quod que uiſorum, etiam in quibus con-
currunt radij, qui ſunt conſimilis poſitionis in parte, inter quos non eſt maxima diuerſitas in
remotione à duobus axibus, uidetur etiam unum: & quòd uiſum, in quo concurrunt radij conſimi-
lis poſitionis in parte, & diuerſæ poſitionis in remotione à duobus axibus maxima diuerſitate, uide
tur duo: & quòd uiſum, quod comprehen ditur per radios diuerſæ poſitionis in parte, uidetur duo:
quamuis remotiones radiorum exeuntium ad ipſum à duobus axibus, ſunt ęquales: & quòd omnia
iſta erunt ſic: dum duo axes concurrent in uno uiſo. Et omnia uiſa aſſueta ſunt oppoſita ambo-
bus uiſibus, & ambo uiſus inſpiciunt ad quodlibet eorum. Ergo duo axes duorum uiſuum ſem-
per concurrunt in eis, & poſitio radiorum reſiduorum, qui concurrũt in communi puncto eorum,
eſt poſitio conſimilis in parte, & non differt in remotione à duobus axibus maxima differentia. Et
ideo quodlibet uiſibilium aſſuetorum uidetur ambobus uiſibus unum: & nullum uiſibilium uide-
tur duo, niſi rarò. Nullum enium uiſibiliũ uidetur duo, niſi cum cõpoſitio eius in reſpectu amborũ ui
fuũ fuerit diuerſa maxima diuerſitate, aut in parte, aut in remotione, aut in utroq; . Et poſitio unius
uiſi apud duos uiſus non diuerſatur quidẽ maxima diuerſitate, niſi rarò. Cauſſa igitur propter quã
unũquodq; uiſorũ aſſuetorũ uidetur unũ ambobus uiſibus, declarata eſt ratiõe & experientia. Et e-
tiã cũ experimẽtator abſtulerit indiuiduũ, quod eſt in medio tabulę, & inſpexerit mediũ ſectionis,
quę eſt in medio tabulę: & intuitus fuerit tũc lineas ſcriptas in tabula: inueniet duas diametros qua
tuor: & inueniet ſimul duas illarũ quatuor ꝓpinquas ſibi, & duas à ſe remotas: & etiã oẽs ſe ſecãtes
ſuperpunctũ mediũ, qđ eſt punctũ ſectiõis duarũ diametrorũ, qđ eſt ſuper axẽ cõmunẽ: & inueniet