Baliani, Giovanni Battista, De motv natvrali gravivm solidorvm et liqvidorvm

List of thumbnails

< >
81
81
82
82
83
83
84
84
85
85
86
86
87
87
88
88
89
89
90
90
< >
page |< < of 177 > >|
    <archimedes>
      <text>
        <body>
          <chap type="bk">
            <pb xlink:href="064/01/090.jpg"/>
            <subchap1 n="4" type="proposition">
              <p type="head">
                <s id="s.000655">PROPOSITIO IV</s>
              </p>
              <subchap2 n="4" type="statement">
                <p type="main">
                  <s id="s.000656">Dato gravi moto perpendiculariter per spa­
                    <lb/>
                  tium datum, diuturnitate data, quod per­
                    <lb/>
                  ficiat motum super plano declinante, per
                    <lb/>
                  spatium itidem datum; Perquirenda in ip­
                    <lb/>
                  so diuturnitas.
                    <figure id="id.064.01.090.1.jpg" xlink:href="064/01/090/1.jpg" number="51"/>
                  </s>
                </p>
              </subchap2>
              <subchap2 n="4" type="proof">
                <p type="main">
                  <s id="s.000657">Moveatur grave per AB perpendiculariter
                    <lb/>
                  diuturnitate data, quae sit eadem AB, inde
                    <lb/>
                  super planum inclinatum BD.</s>
                </p>
                <p type="main">
                  <s id="s.000658">Perquirenda est diuturnitas motus per BD, & per ABD.</s>
                </p>
                <p type="main">
                  <s id="s.000659">Fiat CE media inter CB, CD, & AF nor­
                    <lb/>
                  malis ad BD productam usquequo concurrat
                    <lb/>
                  cum orizontali AC.</s>
                </p>
                <p type="main">
                  <s id="s.000660">Dico BE esse diuturnitatem per motus BD, &
                    <lb/>
                  FE esse diuturnitatem motus per ABD.</s>
                </p>
                <p type="main">
                  <s id="s.000661">Quoniam nota est diuturnitas CB
                    <arrow.to.target n="marg164"/>
                  , & nota est
                    <lb/>
                  EC per constructionem, nota est etiam BE diu­
                    <lb/>
                  turnitas motus per BD, si motus praecedens fue­
                    <lb/>
                  rit per CB; at idem est si fuerit per AB
                    <arrow.to.target n="marg165"/>
                  .</s>
                </p>
                <p type="margin">
                  <s id="s.000662">
                    <margin.target id="marg164"/>
                  Per 15. pr. huius.</s>
                </p>
                <p type="margin">
                  <s id="s.000663">
                    <margin.target id="marg165"/>
                  Per pr. huius.</s>
                </p>
                <p type="main">
                  <s id="s.000664">Ergo EB est diuturnitas motus per BD; At
                    <lb/>
                  FB est diuturnitas motus per AB
                    <arrow.to.target n="marg166"/>
                  . </s>
                  <s id="s.000665">Igitur
                    <lb/>
                  FE est diuturnitas motus per ABD. </s>
                  <s id="s.000666">Quod etc.</s>
                </p>
                <p type="margin">
                  <s id="s.000667">
                    <margin.target id="marg166"/>
                  Per Co. 19. pr. huius.</s>
                </p>
              </subchap2>
              <subchap2 type="corollary">
                <p type="head">
                  <s id="s.000668">Corollarium</s>
                </p>
                <p type="main">
                  <s id="s.000669">Idem sequitur eadem ratione, si AB non sit
                    <lb/>
                  perpendicularis.</s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>