Viviani, Vincenzo
,
De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 347
>
41
(21)
42
(22)
43
(23)
44
(24)
45
(25)
46
(26)
47
(27)
48
(28)
49
(29)
50
(30)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 347
>
page
|<
<
(70)
of 347
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div226
"
type
="
section
"
level
="
1
"
n
="
103
">
<
pb
o
="
70
"
file
="
0094
"
n
="
94
"
rhead
="
"/>
</
div
>
<
div
xml:id
="
echoid-div227
"
type
="
section
"
level
="
1
"
n
="
104
">
<
head
xml:id
="
echoid-head109
"
xml:space
="
preserve
">THEOR. XXI. PROP. XXXXI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2409
"
xml:space
="
preserve
">Similes Hyperbolæ per eundem verticem ſimul adſcriptæ, ſunt
<
lb
/>
inter ſe nunquam coeuntes, & </
s
>
<
s
xml:id
="
echoid-s2410
"
xml:space
="
preserve
">ſemper magis recedentes, ſed ad in-
<
lb
/>
teruallum nunquam perueniunt æquale cuidam dato interuallo.</
s
>
<
s
xml:id
="
echoid-s2411
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2412
"
xml:space
="
preserve
">SInt duæ ſimiles Hyperbolæ ABC, DBE per eundem verticem B ſimul
<
lb
/>
adſcriptæ, & </
s
>
<
s
xml:id
="
echoid-s2413
"
xml:space
="
preserve
">Hyperbolæ ABC maiora ſint latera, tranſuerſum nempe
<
lb
/>
FB, rectũ autem BG; </
s
>
<
s
xml:id
="
echoid-s2414
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2415
"
xml:space
="
preserve
">DBE minora ſint, tranſuerſum HB, rectum verò BI.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2416
"
xml:space
="
preserve
">Patet primùm has ſectiones eſſe inter ſe nunquam coeuntes;</
s
>
<
s
xml:id
="
echoid-s2417
"
xml:space
="
preserve
">cum enim DBE
<
lb
/>
alteri ABC ſit inſcripta, ipſæ, licet in infinitum producantur,
<
note
symbol
="
a
"
position
="
left
"
xlink:label
="
note-0094-01
"
xlink:href
="
note-0094-01a
"
xml:space
="
preserve
">5. Co-
<
lb
/>
roll. 19. h.</
note
>
conuenient.</
s
>
<
s
xml:id
="
echoid-s2418
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2419
"
xml:space
="
preserve
">Dico ampliùs, eaſdem in-
<
lb
/>
<
figure
xlink:label
="
fig-0094-01
"
xlink:href
="
fig-0094-01a
"
number
="
64
">
<
image
file
="
0094-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/QN4GHYBF/figures/0094-01
"/>
</
figure
>
ter ſe longiùs ſemper recede-
<
lb
/>
re. </
s
>
<
s
xml:id
="
echoid-s2420
"
xml:space
="
preserve
">Applicatis enim in alte-
<
lb
/>
ra ſectionum, nempe in in-
<
lb
/>
ſcripta, duabus vbicunque
<
lb
/>
rectis MN, LD, fiat vt BH ad
<
lb
/>
BF, ita BM ad BQ, & </
s
>
<
s
xml:id
="
echoid-s2421
"
xml:space
="
preserve
">BL ad
<
lb
/>
BR, & </
s
>
<
s
xml:id
="
echoid-s2422
"
xml:space
="
preserve
">per Q, R, applicentur
<
lb
/>
in circumſcripta Hyperbola
<
lb
/>
rectæ QS, RA; </
s
>
<
s
xml:id
="
echoid-s2423
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2424
"
xml:space
="
preserve
">cum dia-
<
lb
/>
metrorum ſegmẽta BM, BQ,
<
lb
/>
BL, BR ſint tranſuerſis BH,
<
lb
/>
B F proportionalia,
<
note
symbol
="
b
"
position
="
left
"
xlink:label
="
note-0094-02
"
xlink:href
="
note-0094-02a
"
xml:space
="
preserve
">38. h.</
note
>
quoque applicatæ MN, QS;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2425
"
xml:space
="
preserve
">LD, RA ijſdẽ lateribus pro-
<
lb
/>
portionales, quare M N ad
<
lb
/>
QS erit vt LD ad RA; </
s
>
<
s
xml:id
="
echoid-s2426
"
xml:space
="
preserve
">cum-
<
lb
/>
que ſit vt tota BL ad totam BR, ita pars BM ad partem BQ, erit & </
s
>
<
s
xml:id
="
echoid-s2427
"
xml:space
="
preserve
">reliqua
<
lb
/>
ML ad reliquam QR, vt tota BL ad totam BR, vel vt BH ad BF, vel vt MN
<
lb
/>
ad QS, & </
s
>
<
s
xml:id
="
echoid-s2428
"
xml:space
="
preserve
">vt LD ad RA, vt nuper oſtendimus; </
s
>
<
s
xml:id
="
echoid-s2429
"
xml:space
="
preserve
">quare iunctis rectis DN, AS
<
lb
/>
in menſalibus DM, AQ, erunt ipsæ DN, AS inter ſe parallelæ. </
s
>
<
s
xml:id
="
echoid-s2430
"
xml:space
="
preserve
">Iam
<
note
symbol
="
c
"
position
="
left
"
xlink:label
="
note-0094-03
"
xlink:href
="
note-0094-03a
"
xml:space
="
preserve
">39. h.</
note
>
ductis MN, LD vſque ad circumſcriptam ſectionem ABC, in P, & </
s
>
<
s
xml:id
="
echoid-s2431
"
xml:space
="
preserve
">O, ſi iun-
<
lb
/>
gatur PO, hæc omninò ſecabit iunctam AS, vel intra ipſam ſectionem; </
s
>
<
s
xml:id
="
echoid-s2432
"
xml:space
="
preserve
">(ſi
<
lb
/>
nempe vnius iunctarum ſectioni occurſus, alterius occurſibus contineatur)
<
lb
/>
vel extra (ſi nullius occurſus, alterius occurſibus amplectatur) ſed AS
<
note
symbol
="
d
"
position
="
left
"
xlink:label
="
note-0094-04
"
xlink:href
="
note-0094-04a
"
xml:space
="
preserve
">25. ſe-
<
lb
/>
cundi co-
<
lb
/>
nic</
note
>
ducta ad partes verticis tota cadit extra ſectionem in SK, & </
s
>
<
s
xml:id
="
echoid-s2433
"
xml:space
="
preserve
">punctum P eſt in ipſa ſectione, quare punctum P eſt inter parallelas lineas ASK, DN, ſed
<
lb
/>
<
note
symbol
="
e
"
position
="
left
"
xlink:label
="
note-0094-05
"
xlink:href
="
note-0094-05a
"
xml:space
="
preserve
">10. pri-
<
lb
/>
mi. conic.</
note
>
producta PO conuenit cum altera parallelarum AS, vt modò monitum fuit;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2434
"
xml:space
="
preserve
">taliſq; </
s
>
<
s
xml:id
="
echoid-s2435
"
xml:space
="
preserve
">occurſus eſt omnino ad partes O infra applicatam PN, cum punctum
<
lb
/>
S cadat infra P (nam ex ipſa conſtructione applicata QS eſt infra applicatam
<
lb
/>
MP) quare eadem OP producta conueniet quoque cum altera æquidiſtan-
<
lb
/>
tium DN, ad oppoſitas tamen partes, vtputa ſupra ipſam applicatam PN,
<
lb
/>
vnde intercepta applicata OD, maior erit intercepta PN vertici B </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>