Barrow, Isaac
,
Lectiones opticae & geometricae : in quibus phaenomenon opticorum genuinae rationes investigantur, ac exponuntur: et generalia curvarum linearum symptomata declarantur
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(77)
of 393
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div113
"
type
="
section
"
level
="
1
"
n
="
19
">
<
p
>
<
s
xml:id
="
echoid-s4903
"
xml:space
="
preserve
">
<
pb
o
="
77
"
file
="
0095
"
n
="
95
"
rhead
="
"/>
citeriorem. </
s
>
<
s
xml:id
="
echoid-s4904
"
xml:space
="
preserve
">erit enim connexa VY refractus obliquiſſimi radii, ceu
<
lb
/>
T V, circulum refringentem contingentis.</
s
>
<
s
xml:id
="
echoid-s4905
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4906
"
xml:space
="
preserve
">VIII. </
s
>
<
s
xml:id
="
echoid-s4907
"
xml:space
="
preserve
">Item, in ſecundo caſu ſi recta CVIcirculum EGZtan-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0095-01
"
xlink:href
="
note-0095-01a
"
xml:space
="
preserve
">Fig. 112.</
note
>
gat in I, & </
s
>
<
s
xml:id
="
echoid-s4908
"
xml:space
="
preserve
">adſumatur CY = CI, erit punctum Y citimus alter
<
lb
/>
refractorum limes. </
s
>
<
s
xml:id
="
echoid-s4909
"
xml:space
="
preserve
">Etenim connexa VY refractus erit incidentis
<
lb
/>
(puta VT) ad BC paralleli; </
s
>
<
s
xml:id
="
echoid-s4910
"
xml:space
="
preserve
">qui certè cunctorum obliquiſſimus
<
lb
/>
erit hujuſmodi refractionem patientium. </
s
>
<
s
xml:id
="
echoid-s4911
"
xml:space
="
preserve
">quum enim (è
<
note
symbol
="
*
"
position
="
right
"
xlink:label
="
note-0095-02
"
xlink:href
="
note-0095-02a
"
xml:space
="
preserve
">_Lect. 3. num. 7._</
note
>
connexâ FI, ſit FI. </
s
>
<
s
xml:id
="
echoid-s4912
"
xml:space
="
preserve
">CF:</
s
>
<
s
xml:id
="
echoid-s4913
"
xml:space
="
preserve
">: I. </
s
>
<
s
xml:id
="
echoid-s4914
"
xml:space
="
preserve
">R. </
s
>
<
s
xml:id
="
echoid-s4915
"
xml:space
="
preserve
">hoc eſt ſinus rectus anguli FCI
<
lb
/>
(vel anguli CV T) ad ſinum totum, ut I ad R; </
s
>
<
s
xml:id
="
echoid-s4916
"
xml:space
="
preserve
">nullus ipſo TV
<
lb
/>
obliquior medium BNVpenetrabit; </
s
>
<
s
xml:id
="
echoid-s4917
"
xml:space
="
preserve
">at ipſe quicunque talis reper-
<
lb
/>
cutietur; </
s
>
<
s
xml:id
="
echoid-s4918
"
xml:space
="
preserve
">velut φ ψ in φ ξ.</
s
>
<
s
xml:id
="
echoid-s4919
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4920
"
xml:space
="
preserve
">IX. </
s
>
<
s
xml:id
="
echoid-s4921
"
xml:space
="
preserve
">Cæterùm hìc (tametſi præter ordlnem non nihil, extráque
<
lb
/>
ſuum locum) egregiam quandam & </
s
>
<
s
xml:id
="
echoid-s4922
"
xml:space
="
preserve
">præſertim notabilem iſtius, quem
<
lb
/>
nuncupavimus, refractarii circuli proprietatem interſeremus: </
s
>
<
s
xml:id
="
echoid-s4923
"
xml:space
="
preserve
">Om-
<
lb
/>
nium à puncto B promanantium, & </
s
>
<
s
xml:id
="
echoid-s4924
"
xml:space
="
preserve
">à circuli EGZcavis partibus
<
lb
/>
refractionem patentium (juxta caſus prænominatos reſpectivam) re-
<
lb
/>
fracti per punctum C tranſibunt.</
s
>
<
s
xml:id
="
echoid-s4925
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4926
"
xml:space
="
preserve
">Nam ejuſmodi quilibet incidat radius BG, & </
s
>
<
s
xml:id
="
echoid-s4927
"
xml:space
="
preserve
">(ſtantibus quæ præ-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0095-03
"
xlink:href
="
note-0095-03a
"
xml:space
="
preserve
">Fig. 113,
<
lb
/>
114.</
note
>
ſtructa præmonſtratáque ſunt) triangula BG F, GCFſimilia ſunt;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4928
"
xml:space
="
preserve
">angulúſque BGFpar angulo GC F; </
s
>
<
s
xml:id
="
echoid-s4929
"
xml:space
="
preserve
">itémque FG. </
s
>
<
s
xml:id
="
echoid-s4930
"
xml:space
="
preserve
">CF:</
s
>
<
s
xml:id
="
echoid-s4931
"
xml:space
="
preserve
">: I. </
s
>
<
s
xml:id
="
echoid-s4932
"
xml:space
="
preserve
">R; </
s
>
<
s
xml:id
="
echoid-s4933
"
xml:space
="
preserve
">
<
lb
/>
eſt autem FG ad CF, _ut Sinus anguli_ GCF_hoc eſt anguli BGF)_
<
lb
/>
_ad Sinum anguli CG F. </
s
>
<
s
xml:id
="
echoid-s4934
"
xml:space
="
preserve
">ergò Sinus anguli_ BGF_(qui eſt angulus_
<
lb
/>
_incidentiæ) ad Sinum anguli_ CGFſe habet, ut I ad R. </
s
>
<
s
xml:id
="
echoid-s4935
"
xml:space
="
preserve
">ergò CG β eſt
<
lb
/>
refractus ipſius BG: </
s
>
<
s
xml:id
="
echoid-s4936
"
xml:space
="
preserve
">Q. </
s
>
<
s
xml:id
="
echoid-s4937
"
xml:space
="
preserve
">E. </
s
>
<
s
xml:id
="
echoid-s4938
"
xml:space
="
preserve
">D.</
s
>
<
s
xml:id
="
echoid-s4939
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4940
"
xml:space
="
preserve
">_Nota._ </
s
>
<
s
xml:id
="
echoid-s4941
"
xml:space
="
preserve
">Si qui ad convexas hujuſce circuli partes incidunt, ità re-
<
lb
/>
flectantur, ut perpetuo Sinus anguli incidentiæ ad Sinum anguli reflexi
<
lb
/>
ſe habeat ut I ad R; </
s
>
<
s
xml:id
="
echoid-s4942
"
xml:space
="
preserve
">etiam reflexi per C tranſibunt.</
s
>
<
s
xml:id
="
echoid-s4943
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4944
"
xml:space
="
preserve
">Hinc habetur unum (quoad hos caſus) è præcipuis in _Dioptrica_
<
lb
/>
deſideratum, perquam utile; </
s
>
<
s
xml:id
="
echoid-s4945
"
xml:space
="
preserve
">Superficies ſimpliciſſima radios ab uno
<
lb
/>
puncto procedentes ità refringens, ut tanquam ab altero proveniant;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4946
"
xml:space
="
preserve
">id quod demonſtrationis adductus commoditate _Corollarii_ loco (licèt
<
lb
/>
ad aliam pertinens hypotheſin) hic apponere non dubitavi, redeamus
<
lb
/>
è diverticulo.</
s
>
<
s
xml:id
="
echoid-s4947
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4948
"
xml:space
="
preserve
">X. </
s
>
<
s
xml:id
="
echoid-s4949
"
xml:space
="
preserve
">Notandum porrò, quòd diverſos refringentes circulos, iíſque
<
lb
/>
competentes, modo præſtituto determinatos, refractarios adſumendo,
<
lb
/>
rectæ CB, EZ, CE, CZ, CF eaſdem in uno, quas in altero quovis
<
lb
/>
proportiones obſervant; </
s
>
<
s
xml:id
="
echoid-s4950
"
xml:space
="
preserve
">id quod facilimè demonſtratur; </
s
>
<
s
xml:id
="
echoid-s4951
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4952
"
xml:space
="
preserve
">ſatís </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>