Gravesande, Willem Jacob 's, An essay on perspective

Page concordance

< >
Scan Original
91
92
93
94 43
95 44
96 45
97 46
98
99
100
101 47
102 48
103
104
105
106 49
107 50
108 51
109 52
110
111
112
113 53
114 54
115 55
116 56
117
118
119
120 57
< >
page |< < (44) of 237 > >|
    <echo version="1.0RC">
      <text xml:lang="en" type="free">
        <div xml:id="echoid-div157" type="section" level="1" n="85">
          <p>
            <s xml:id="echoid-s1129" xml:space="preserve">
              <pb o="44" file="0084" n="95" rhead="An ESSAY"/>
            Line G E, in the Points p, from every of which
              <lb/>
            raiſe Perpendiculars p q, each of which muſt
              <lb/>
            be continued on each Side the Line G E, equal
              <lb/>
            to m n the Part of the correſpondent Line p m.
              <lb/>
            </s>
            <s xml:id="echoid-s1130" xml:space="preserve">Now if a great Number of the Points q be thus
              <lb/>
            found, and they are joyn’d by an even Hand,
              <lb/>
            you will have a Curve Line which will be the
              <lb/>
            Repreſentation ſought.</s>
            <s xml:id="echoid-s1131" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div159" type="section" level="1" n="86">
          <head xml:id="echoid-head92" xml:space="preserve">
            <emph style="sc">Demonstration</emph>
          .</head>
          <p style="it">
            <s xml:id="echoid-s1132" xml:space="preserve">The Rays by which we perceive a Sphere, do form
              <lb/>
            an upright Cone, whoſe Axis paſſes through the Cen-
              <lb/>
            ter of the Sphere, and whoſe Section made by the
              <lb/>
            Perſpective Plane, is the Repreſentation ſought: </s>
            <s xml:id="echoid-s1133" xml:space="preserve">from
              <lb/>
            whence it follows, that I is the Point in the Perſpe-
              <lb/>
            ctive Plane, through which the Cone’s Axis paſſes.
              <lb/>
            </s>
            <s xml:id="echoid-s1134" xml:space="preserve">But when an upright Cone is ſo cut by a Plane, that
              <lb/>
            the Section is an Ellipſis, as in this Caſe, the tranſ-
              <lb/>
            verſe Diameter of this Ellipſis, will paſs through
              <lb/>
            the Point of Concurrence of the ſaid Plane, and
              <lb/>
            Axis of the Cone, and that Point wherein a Per-
              <lb/>
            pendicular drawn from the Vertex of the Cone, cuts
              <lb/>
            the ſaid Plane. </s>
            <s xml:id="echoid-s1135" xml:space="preserve">This will appear evident enough
              <lb/>
            to any one of but mean Knowledge in Conick Secti-
              <lb/>
            ons. </s>
            <s xml:id="echoid-s1136" xml:space="preserve">Therefore the tranſverſe Axis of the Ellipſis,
              <lb/>
            which is the Repreſentation of the Sphere, is ſome
              <lb/>
            Part of V I; </s>
            <s xml:id="echoid-s1137" xml:space="preserve">for the Eye is the Vertex of the Cone
              <lb/>
            formed by the viſual Rays of the Spbere.</s>
            <s xml:id="echoid-s1138" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s1139" xml:space="preserve">Now let us conceive a Plane to paſs through the
              <lb/>
            Eye, and the Line I V; </s>
            <s xml:id="echoid-s1140" xml:space="preserve">this will paſs through the
              <lb/>
            Center of the Sphere: </s>
            <s xml:id="echoid-s1141" xml:space="preserve">And if a Perpendicular be
              <lb/>
            let fall from the Center upon the principal Ray con-
              <lb/>
            tinued, that Part of the ſaid Ray included between
              <lb/>
            the Point of Sight, and the Point wherein this Per-
              <lb/>
            pendicular falls, which is always parallel to the Per-
              <lb/>
            ſpective Plane, will be equal to the Diſtance from
              <lb/>
            the Center of the Sphere to the Perſpective </s>
          </p>
        </div>
      </text>
    </echo>