Huygens, Christiaan, Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica

Page concordance

< >
Scan Original
31
32
33 327
34 328
35
36
37
38 329
39 330
40 331
41 332
42 333
43 334
44 335
45 336
46 337
47 338
48 339
49 340
50
51
52
53
54
55
56 344
57 345
58 346
59 347
60 348
< >
page |< < (378) of 568 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div90" type="section" level="1" n="42">
          <p>
            <s xml:id="echoid-s1721" xml:space="preserve">
              <pb o="378" file="0090" n="96" rhead="CHRISTIANI HUGENII"/>
            ſimul A G, A B; </s>
            <s xml:id="echoid-s1722" xml:space="preserve">hoc eſt, minor quam C A cum dimidia
              <lb/>
            A G. </s>
            <s xml:id="echoid-s1723" xml:space="preserve">Quare ablatâ utrimque C A, erit C H minor dimi-
              <lb/>
            diâ A G. </s>
            <s xml:id="echoid-s1724" xml:space="preserve">C A vero dimidiâ A G major eſt. </s>
            <s xml:id="echoid-s1725" xml:space="preserve">Ergo ſi adda-
              <lb/>
            tur A C ad A G, erit tota C G major quam tripla ipſius
              <lb/>
            C H. </s>
            <s xml:id="echoid-s1726" xml:space="preserve">Quia autem ut H G ad G E, ita eſt E D ad D K;
              <lb/>
            </s>
            <s xml:id="echoid-s1727" xml:space="preserve">ut autem G E ad G C, ita L D ad D E: </s>
            <s xml:id="echoid-s1728" xml:space="preserve">Erit ex æquo in
              <lb/>
            proportione turbata ut H G ad G C, ita L D ad D K. </s>
            <s xml:id="echoid-s1729" xml:space="preserve">Et
              <lb/>
            per converſionem rationis & </s>
            <s xml:id="echoid-s1730" xml:space="preserve">dividendo, ut G C ad C H,
              <lb/>
            ita D K ad K L. </s>
            <s xml:id="echoid-s1731" xml:space="preserve">Ergo etiam D K major quam tripla K L. </s>
            <s xml:id="echoid-s1732" xml:space="preserve">
              <lb/>
            Erat autem D K exceſſus ipſius E B ſupra E G. </s>
            <s xml:id="echoid-s1733" xml:space="preserve">Ergo K L
              <lb/>
            minor eſt triente dicti exceſſus. </s>
            <s xml:id="echoid-s1734" xml:space="preserve">K B autem æqualis eſt ipſi
              <lb/>
            E B ſubtenſæ. </s>
            <s xml:id="echoid-s1735" xml:space="preserve">Ergo K B unà cum K L, hoc eſt, tota
              <lb/>
            L B omnino minor erit arcu B E . </s>
            <s xml:id="echoid-s1736" xml:space="preserve">Quod erat
              <note symbol="*" position="left" xlink:label="note-0090-01" xlink:href="note-0090-01a" xml:space="preserve">per 7. huj.</note>
            dum.</s>
            <s xml:id="echoid-s1737" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s1738" xml:space="preserve">Perpenſo autem Theoremate præcedenti, liquet non poſſe
              <lb/>
            ſumi punctum aliud in producta B A diametro, quod minus
              <lb/>
            à circulo diſtet quam punctum C, eandemque ſervet proprie-
              <lb/>
            tatem, ut nimirum ductâ C L fiat tangens intercepta B L
              <lb/>
            ſemper minor arcu abſciſſo B E.</s>
            <s xml:id="echoid-s1739" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s1740" xml:space="preserve">Porro uſus hujus Theorematis multiplex eſt, cum in inve-
              <lb/>
            niendis triangulorum angulis quorum cognita ſint latera, id-
              <lb/>
            que citra tabularum opem, tum ut latera ex angulis datis
              <lb/>
            inveniantur, vel cuilibet peripheriæ arcui ſubtenſa aſſigne-
              <lb/>
            tur. </s>
            <s xml:id="echoid-s1741" xml:space="preserve">Quæ omnia à Snellio in Cyclometricis diligenter pertra-
              <lb/>
            ctata ſunt.</s>
            <s xml:id="echoid-s1742" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div92" type="section" level="1" n="43">
          <head xml:id="echoid-head66" xml:space="preserve">
            <emph style="sc">Theorema</emph>
          XIV.
            <emph style="sc">Propos</emph>
          . XVII.</head>
          <p style="it">
            <s xml:id="echoid-s1743" xml:space="preserve">
              <emph style="bf">P</emph>
            Ortionis circuli centrum gravitatis diametrum
              <lb/>
            portionis ita dividit, ut pars quæ ad verticem
              <lb/>
            reliquâ major ſit, minor autem quam ejuſdem ſeſ-
              <lb/>
            quialtera.</s>
            <s xml:id="echoid-s1744" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s1745" xml:space="preserve">Eſto circuli portio A B C, (ponatur autem ſemicirculo
              <lb/>
              <note position="left" xlink:label="note-0090-02" xlink:href="note-0090-02a" xml:space="preserve">TAB. XL.
                <lb/>
              Fig. 2.</note>
            minor, quoniam cæteræ ad propoſitum non faciunt) & </s>
            <s xml:id="echoid-s1746" xml:space="preserve">dia-
              <lb/>
            meter portionis ſit B D, quæ bifariam ſecetur in E. </s>
            <s xml:id="echoid-s1747" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>