Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
Scan
Original
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000949
">
<
pb
pagenum
="
186
"
xlink:href
="
010/01/194.jpg
"/>
<
arrow.to.target
n
="
marg239
"/>
<
lb
/>
tiæ ad diuulſionem exercetur in centro I circuli AB.
<
lb
/>
</
s
>
<
s
id
="
s.000950
">Habebimus igitur vectem inflexum CBI in quo vis
<
lb
/>
<
expan
abbr
="
mouẽs
">mouens</
expan
>
M applicatur in C, reſiſtentia verò applicatur
<
lb
/>
in I, & fulcimentum, ſeù centrum reuolutionis vectis
<
lb
/>
CBI eſt punctum B quod fixum perſeuerat dum cir
<
lb
/>
ca ipſum motus, & reuolutiones partium vectis
<
expan
abbr
="
fiũt
">fiunt</
expan
>
;
<
lb
/>
Quaproptèr, iuxtà leges Mechanices, reſiſtentia to
<
lb
/>
talis ad diuulſionem, & ſeparationem ſuperficiei AB
<
lb
/>
ab ipſo pauimento ad vim
<
expan
abbr
="
mouẽtem
">mouentem</
expan
>
M eamdem pro
<
lb
/>
portionem habebit, quam vectis longitudo CB ad
<
lb
/>
oppoſitam eius portionem BI, ſcilicèt habebit eam
<
lb
/>
dem proportionem. </
s
>
<
s
id
="
s.000951
">quam pondus S habet ad pondus
<
lb
/>
R. </
s
>
<
s
id
="
s.000952
">Verùm pondus R æquale erat potentiæ M. igitur
<
lb
/>
pondus S æquale erit reſiſtentię abſolutæ, & totali,
<
lb
/>
quam exercet ſuperficies AB quando diuelli, & ſe
<
lb
/>
parari debet à ſuperficie paui
<
expan
abbr
="
mẽti
">menti</
expan
>
tractione directa.
<
lb
/>
</
s
>
<
s
id
="
s.000953
">Hinc deducitur quòd ſi
<
expan
abbr
="
põ-
">pon
<
lb
/>
</
expan
>
<
figure
id
="
id.010.01.194.1.jpg
"
xlink:href
="
010/01/194/1.jpg
"
number
="
71
"/>
<
lb
/>
dus O propoſitionis 89. di
<
lb
/>
uellit columnam à pauimento
<
lb
/>
directione, & impetu tranſ
<
lb
/>
uerſali, & perpendiculari ad
<
lb
/>
latus columnę, poterit nihilo
<
lb
/>
minùs indagari
<
expan
abbr
="
reſiſtẽtia
">reſiſtentia</
expan
>
ab
<
lb
/>
ſoluta, & totalis contiguita
<
lb
/>
tis, vel repugnantiæ ad vacuum earumdem ſuperfi
<
lb
/>
cierum, eritque talis vis abſoluta tantomaior pon
<
lb
/>
dere O, quantò altitudo columnæ CB maior eſt ſe
<
lb
/>
miſſe diametri AB, & ſic ſi vis transuerſalitèr colum
<
lb
/>
nam diuellens æqualis eſſet ponderi trium librarum </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>