Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Page concordance

< >
Scan Original
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001004">
                <pb pagenum="195" xlink:href="010/01/203.jpg"/>
                <arrow.to.target n="marg256"/>
                <lb/>
              habet, quam lignea moles ABC ad molem HIK. po­
                <lb/>
              natur leuitas, aut vis
                <expan abbr="eleuãs">eleuans</expan>
              N, quæ habeat ad R
                <expan abbr="quã-libet">quan­
                  <lb/>
                libet</expan>
              proportionem commenſurabilem ex inſinitis,
                <lb/>
              quæ proponi poſſunt pariterque fiat moles BM ex
                <lb/>
              eodem ligno conſtans quæ ad HIK ſe habeat vt N
                <lb/>
              ad R. mani feſtum eſt, quòd quotieſcumque lignum
                <lb/>
              BM æquatur ligno ABC, runc paritèr vis leuitatis N
                <lb/>
              æqualis erit ipſi S (eò quòd moles æquales eiuſdem̨
                <lb/>
              ligni ſursùm æquali vi leuitatis impellunt) &
                <expan abbr="quo-tieſcũque">quo­
                  <lb/>
                tieſcunque</expan>
              ligni moles BM maior fuerit, quàm ABC
                <lb/>
              ſemper leuitas N maior erit leuitate S, & quando li­
                <lb/>
              gnum BM minus fuerit, quàm ABC, erit quoque le­
                <lb/>
              uitas N minor, quàm S, & habent BM, HIK, & N &
                <lb/>
              R quamcumque proportionalitatem commenſurabi­
                <lb/>
              lem, igitur (ex noſtro Euclide reſtituto) moles li­
                <lb/>
                <arrow.to.target n="marg257"/>
                <lb/>
              gnea ABC ad molem HIK eamdem proportionem̨
                <lb/>
              habebit quam vis leuitatis S, qua nimirùm ABC in
                <lb/>
              aqua aſcendit, ad leuitatem R qua corpus HIK ele­
                <lb/>
              uatur in eodem fluido, quòd fuerat &c. </s>
            </p>
            <p type="margin">
              <s id="s.001005">
                <margin.target id="marg256"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="margin">
              <s id="s.001006">
                <margin.target id="marg257"/>
              Lib. 3 prop.
                <lb/>
              </s>
              <s id="s.001007">24.</s>
            </p>
            <p type="main">
              <s id="s.001008">Si quis fortè ſuſpicaretur ex figurarum diuerſitate
                <lb/>
                <arrow.to.target n="marg258"/>
                <lb/>
              prædictorum corporum leuium licèt eiuſdem conſi­
                <lb/>
              ſtentiæ homogeneæ ſint, & eumdem gradum rarita­
                <lb/>
              tis habeant, alterari poſſe iam dictam proportionali­
                <lb/>
              tatem, monendus profectò eſt, quod præter Ariſtote­
                <lb/>
                <arrow.to.target n="marg259"/>
                <lb/>
              lis aſſertum, vbi ait, quod
                <emph type="italics"/>
              figuræ non ſunt cauſæ ſimplici­
                <lb/>
              tèr aſcenſus, vel deſcenſus corporum in fluido, ſed tantum­
                <lb/>
              modò tardioris, vel celerioris motus
                <emph.end type="italics"/>
              , idipſum poſtea de­
                <lb/>
              monſtratum fuit ex Mechanicis principijs à Ghetal­
                <lb/>
              do, & Galilæo. </s>
              <s id="s.001009">attamen incaſu noſtro non requirun-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>