Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Page concordance

< >
Scan Original
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000363">
                <pb pagenum="77" xlink:href="010/01/085.jpg"/>
                <arrow.to.target n="marg84"/>
                <lb/>
              quieſcat, ſiue circa eius axim
                <lb/>
                <figure id="id.010.01.085.1.jpg" xlink:href="010/01/085/1.jpg"/>
                <lb/>
              M conuertatur libra ſemper
                <lb/>
              in ſitu horizontali æquilibra­
                <lb/>
              ta perſiſtet. </s>
            </p>
            <p type="margin">
              <s id="s.000364">
                <margin.target id="marg84"/>
              Cap. 3. flui­
                <lb/>
              dum in ſuo
                <lb/>
              toto quie­
                <lb/>
              ſcens pon­
                <lb/>
              derat.</s>
            </p>
            <p type="main">
              <s id="s.000365">Vt verò ratio huius effectus
                <lb/>
              percipiatur, recurrendum eſt
                <lb/>
              ad centri grauitatis definitio­
                <lb/>
              nem, ex qua habetur quòd corpus quodlibet ſuſpen­
                <lb/>
              ſum à centro grauitatis eius quomodocumque reuol­
                <lb/>
              uatur circa centrum, ſemper æquilibrari, & haberę
                <lb/>
              partes æqualium momentorum, vnde infertur, quòd
                <lb/>
              vniuerſa vis, qua corpus aliquod
                <expan abbr="tẽdit">tendit</expan>
              deorsùm, ſci­
                <lb/>
              licet grauitas eius, exercetur in vnico illo puncto,
                <lb/>
              quod centrum grauitatis eius vocatur. </s>
              <s id="s.000366">Hinc deduci­
                <lb/>
              tur, quod ſi rota, ſiuè pila ſuſtineatur ex centro gra­
                <lb/>
              uitatis eius ſiuè quieſcat, ſiuè moueatur, numquam
                <lb/>
              centrum grauitatis ſitum commutabit, aliàs daretur
                <lb/>
              motus perpetuus, qui naturæ legibus repugnat. </s>
            </p>
            <p type="main">
              <s id="s.000367">Similitèr ſi concipiatur fiſtula vitrea inflexa ad
                <lb/>
              modum anuli, vt eſt EFGK, ſitque prædicta fiſtulą
                <lb/>
              plena aqua ſituata perpendiculari­
                <lb/>
                <figure id="id.010.01.085.2.jpg" xlink:href="010/01/085/2.jpg"/>
                <lb/>
              tèr ſuper planum ſubiectum RS à
                <lb/>
              quo fulciatur; habebit profectò
                <expan abbr="cẽ-trum">cen­
                  <lb/>
                trum</expan>
              grauitatis in eius puncto in­
                <lb/>
              termedio N, dum quieſcit aqua iņ
                <lb/>
              prædicto anulo, at ſi reuoluatur vt
                <lb/>
              nimirùm pars EFG deſcendat, reliqua verò GKE
                <lb/>
              ſursùm
                <expan abbr="aſcẽdat">aſcendat</expan>
              , non proindè centrum grauitatis
                <expan abbr="trãſ-feretur">tranſ­
                  <lb/>
                feretur</expan>
              ab N versùs O, ſcilicèt intra ſemicirculum̨ </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>