Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Page concordance

< >
Scan Original
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001199">
                <pb pagenum="233" xlink:href="010/01/241.jpg"/>
                <arrow.to.target n="marg311"/>
                <lb/>
              ſeu energiæ compreſſionis, quam patitur pars B,
                <expan abbr="quã-do">quan­
                  <lb/>
                do</expan>
              ambo poſt flexionem, & motum quieſcunt; ergo
                <lb/>
              momentum
                <expan abbr="potẽtiæ">potentiæ</expan>
              P æqua­
                <lb/>
                <figure id="id.010.01.241.1.jpg" xlink:href="010/01/241/1.jpg"/>
                <lb/>
              le eſt
                <expan abbr="momẽto">momento</expan>
                <expan abbr="reſiſtẽtiæ">reſiſtentiæ</expan>
              , ſeu
                <lb/>
              energiæ, compreſſionis,
                <expan abbr="quã">quam</expan>
                <lb/>
              patitur B, & fiunt niſus per
                <lb/>
              eamdem rectam perpendi­
                <lb/>
              cularem ad horizontem, igi­
                <lb/>
              tur abſoluta potentia P æ­
                <lb/>
              qualis | eſt reſiſtentiæ abſolutæ, ſeu vi compreſſionis,
                <lb/>
              quam patitur B. </s>
              <s id="s.001200">Pari ratione abſoluta potentia E, vel
                <lb/>
              G æquatur reſiſtentiæ, ſeu vi compreſſionis partis op­
                <lb/>
              poſitæ C. vnde deducitur duas potentias P & E, ſeu
                <lb/>
              G ſimul ſumptas æquales eſſe reſiſtentiæ integræ, ſeu
                <lb/>
              vi totali compreſſionis, quam patitur anulus, vel ve­
                <lb/>
              ſica ABC. </s>
            </p>
            <p type="margin">
              <s id="s.001201">
                <margin.target id="marg311"/>
              Cap. 5. de ae
                <lb/>
              ris grauitate
                <lb/>
              æquilibrio,
                <lb/>
              ſtructura, &
                <lb/>
              vi elateria
                <lb/>
              eius.</s>
            </p>
            <p type="main">
              <s id="s.001202">Poſtea ſubſtituatur pauimentum durum RS loco
                <lb/>
              potentiæ flectentis E, vel G, & ſolummodo ſupernè
                <lb/>
              anulus, vel veſica aerea comprimatur à potentia P
                <lb/>
              ſcilicet à ſemiſſe potentiarum P, & E. </s>
              <s id="s.001203">Dico anulum̨,
                <lb/>
              vel veſicam aeream æquè conſtringi, ac priùs à dua­
                <lb/>
              bus potentijs contrarijs contundebatur. </s>
              <s id="s.001204">Quia paui­
                <lb/>
              mentum ſtabile RS perinde reagit impediendo mo­
                <lb/>
              tum, & deſcenſum ponderis P, ipſumque in eodem ſi­
                <lb/>
              tu quiete ſtabili permanere cogit, ac operatur manus
                <lb/>
              ſubiecta E, vel pondus G mediante libra FE, ergo
                <lb/>
              ſtabilitatis ſoli momentum æquatur momento, & po­
                <lb/>
              tentiæ abſolutæ ipſius E, ſeu P. quare anulus, ſeu ae­
                <lb/>
              rea veſica BC comprimitur non à ſingulari, & ſubdu-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>