Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
Scan
Original
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000363
">
<
pb
pagenum
="
77
"
xlink:href
="
010/01/085.jpg
"/>
<
arrow.to.target
n
="
marg84
"/>
<
lb
/>
quieſcat, ſiue circa eius axim
<
lb
/>
<
figure
id
="
id.010.01.085.1.jpg
"
xlink:href
="
010/01/085/1.jpg
"
number
="
36
"/>
<
lb
/>
M conuertatur libra ſemper
<
lb
/>
in ſitu horizontali æquilibra
<
lb
/>
ta perſiſtet. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.000364
">
<
margin.target
id
="
marg84
"/>
Cap. 3. flui
<
lb
/>
dum in ſuo
<
lb
/>
toto quie
<
lb
/>
ſcens pon
<
lb
/>
derat.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000365
">Vt verò ratio huius effectus
<
lb
/>
percipiatur, recurrendum eſt
<
lb
/>
ad centri grauitatis definitio
<
lb
/>
nem, ex qua habetur quòd corpus quodlibet ſuſpen
<
lb
/>
ſum à centro grauitatis eius quomodocumque reuol
<
lb
/>
uatur circa centrum, ſemper æquilibrari, & haberę
<
lb
/>
partes æqualium momentorum, vnde infertur, quòd
<
lb
/>
vniuerſa vis, qua corpus aliquod
<
expan
abbr
="
tẽdit
">tendit</
expan
>
deorsùm, ſci
<
lb
/>
licet grauitas eius, exercetur in vnico illo puncto,
<
lb
/>
quod centrum grauitatis eius vocatur. </
s
>
<
s
id
="
s.000366
">Hinc deduci
<
lb
/>
tur, quod ſi rota, ſiuè pila ſuſtineatur ex centro gra
<
lb
/>
uitatis eius ſiuè quieſcat, ſiuè moueatur, numquam
<
lb
/>
centrum grauitatis ſitum commutabit, aliàs daretur
<
lb
/>
motus perpetuus, qui naturæ legibus repugnat. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000367
">Similitèr ſi concipiatur fiſtula vitrea inflexa ad
<
lb
/>
modum anuli, vt eſt EFGK, ſitque prædicta fiſtulą
<
lb
/>
plena aqua ſituata perpendiculari
<
lb
/>
<
figure
id
="
id.010.01.085.2.jpg
"
xlink:href
="
010/01/085/2.jpg
"
number
="
37
"/>
<
lb
/>
tèr ſuper planum ſubiectum RS à
<
lb
/>
quo fulciatur; habebit profectò
<
expan
abbr
="
cẽ-trum
">cen
<
lb
/>
trum</
expan
>
grauitatis in eius puncto in
<
lb
/>
termedio N, dum quieſcit aqua iņ
<
lb
/>
prædicto anulo, at ſi reuoluatur vt
<
lb
/>
nimirùm pars EFG deſcendat, reliqua verò GKE
<
lb
/>
ſursùm
<
expan
abbr
="
aſcẽdat
">aſcendat</
expan
>
, non proindè centrum grauitatis
<
expan
abbr
="
trãſ-feretur
">tranſ
<
lb
/>
feretur</
expan
>
ab N versùs O, ſcilicèt intra ſemicirculum̨ </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>