Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
Scan
Original
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.001503
">
<
pb
pagenum
="
288
"
xlink:href
="
010/01/296.jpg
"/>
<
arrow.to.target
n
="
marg386
"/>
<
lb
/>
hæc illam metitur, vel non; & primò ponamus RS ab
<
lb
/>
A
<
expan
abbr
="
mẽſurari
">menſurari</
expan
>
, habebit ergo RS ad A eamdem propor
<
lb
/>
tionem, quam aliquis numerus finitus ad vnitatem,
<
lb
/>
& ideò in infinita multitudine partium A, B, C, &c.
<
lb
/>
ſumi poteſt multitudo partium, quæ maior ſit numero
<
lb
/>
partium ipſius RS, & prædicta maior multitudo par
<
lb
/>
tium efficiat
<
expan
abbr
="
extenſionẽ
">extenſionem</
expan
>
X proculdubio X maior erit
<
lb
/>
ipſa RS, at aggregatum ex infinitis particulis A, B, C,
<
lb
/>
&c. maiorem extenſionem creat quam prædicta mul
<
lb
/>
titudo finita X, ergo multò magis aggregatum ex in
<
lb
/>
finitis particulis maiorem extenſionem efficit, quàm
<
lb
/>
habeat RS, illa verò extenſio quæ maior eſt
<
expan
abbr
="
quacũq;
">quacunque</
expan
>
<
lb
/>
quantitate finita, neceſſariò infinita erit, ergo aggre
<
lb
/>
gatum ex particulis quantis numerò infinitis inter ſe
<
lb
/>
æqualibus efficit extenſionem infinitam. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.001504
">
<
margin.target
id
="
marg386
"/>
Cap. 7. dę
<
lb
/>
natura flui
<
lb
/>
ditatis.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001505
">Secundò ſint A, & RS inter
<
lb
/>
<
figure
id
="
id.010.01.296.1.jpg
"
xlink:href
="
010/01/296/1.jpg
"
number
="
111
"/>
<
lb
/>
ſe
<
expan
abbr
="
incõmenſurabilia
">incommenſurabilia</
expan
>
, patet ipſi
<
lb
/>
RS addi poſſe portionem aliæ
<
lb
/>
quam SV ita vt RV multiplex
<
lb
/>
ſit ipſius A, & tunc
<
expan
abbr
="
aggregatũ
">aggregatum</
expan
>
<
lb
/>
ex infinitis particulis æqualibus
<
lb
/>
A, B, C, &c. </
s
>
<
s
id
="
s.001506
"> maiorem extenſionem efficiet quàm
<
lb
/>
RV, vt mox oſtenſum fuit, & ideò multò maiorem
<
lb
/>
extenſionem, quàm RS, creabit, proptereaque infi
<
lb
/>
nitam eſſe concludemus.
<
lb
/>
<
figure
id
="
id.010.01.296.2.jpg
"
xlink:href
="
010/01/296/2.jpg
"
number
="
112
"/>
</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>