Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < (43) of 213 > >|
DE CENTRO GRAVIT. SOLID.
b m. ergo circulus a c circuli _k_ g: & idcirco cylindrus
a h cylindri _k_ l duplus erit.
quare & linea o p dupla
ipſius p n.
Deinde inſcripta & circumſcripta portioni
alia figura, ita ut inſcripta conſtituatur ex tribus cylin-
dris q r, s g, tu:
circumſcripta uero ex quatuor a x, y z,
_K_ ν, θ λ:
diuidantur b o, o m, m n, n d bifariam in punctis
μ ν π ρ.
Itaque cylindri θ λ centrum grauitætis eſt punctum
μ:
& cylindri K ν centrum ν. ergo ſi linea μ ν diuidatur in σ,
ita ut μ σ ad σ ν proportionẽ habeat, quam cylindrus K ν
ad cylindrum θ λ, uidelicet quam quadratum K m ad qua-
dratum θ o, hoc eſt, quam linea m b ad b o:
erit σ centrum
20. primi
conicorũ
magnitudinis compoſitæ ex cylindris K ν, θ λ.
& cum linea
m b ſit dupla b o, erit &
μ σ ipſius σ ν dupla. præterea quo-
niam cylindri y z centrum grauitatis eſt π, linea σ π ita diui
ſa in τ, ut σ τ ad τ π eam habeat proportionem, quam cylin
drus y z ad duos cylindros K ν, θ λ:
erit τ centrum magnitu
dinis, quæ ex dictis tribus cylindris conſtat.
cylindrus au-
tẽ y z ad cylindrum θ λ eſt, ut linea n b ad b o, hoc eſt ut 3
ad 1:
& ad cylindrum k ν, ut n b ad b m, uidelicet ut 3 ad 2.
quare y z cylĩdrus duobus cylindris k ν, θ λ æqualis erit. &
propterea linea σ τ æqualis ipſi τ π.
denique cylindri a x
centrum grauitatis eſt punctum ρ.
& cum τ ζ diuiſa fuerit
in proportionem, quam habet cylindrus a x ad tres cy-
lindros y z, _k_ ν, θ λ:
erit in eo puncto centrum grauitatis
totius figuræ circũſcriptæ.
Sed cylindrus a x ad ipſum y z
eſt ut linea d b ad b n:
hoc eſt ut 4 ad 3: & duo cylindri _k_ ν
θ λ cylindro y z ſunt æquales.
cylindrns igitur a x ad tres
iam dictos cylindros eſt ut 2 ad 3.
Sed quoniã μ σ eſt dua-
rum partium, &
σ ν unius, qualium μ π eſt ſex; erit σ π par-
tium quatuor:
proptereaq; τ π duarum, & ν π, hoc eſt π ρ
trium.
quare ſequitur ut punctum π totius figuræ circum
ſcriptæ ſit centrum.
Itaque fiat ν υ ad υ π, ut μ σ ad σ ν. & υ ρ
bifariam diuidatur in φ.
Similiter ut in circumſcripta figu
ra oſtendetur centrum magnitudinis compoſitæ ex cylin-

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index