Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < (43) of 213 > >|
DE CENTRO GRAVIT. SOLID.
b m. ergo circulus a c circuli _k_ g: & idcirco cylindrus
a h cylindri _k_ l duplus erit.
quare & linea o p dupla
ipſius p n.
Deinde inſcripta & circumſcripta portioni
alia figura, ita ut inſcripta conſtituatur ex tribus cylin-
dris q r, s g, tu:
circumſcripta uero ex quatuor a x, y z,
_K_ ν, θ λ:
diuidantur b o, o m, m n, n d bifariam in punctis
μ ν π ρ.
Itaque cylindri θ λ centrum grauitætis eſt punctum
μ:
& cylindri K ν centrum ν. ergo ſi linea μ ν diuidatur in σ,
ita ut μ σ ad σ ν proportionẽ habeat, quam cylindrus K ν
ad cylindrum θ λ, uidelicet quam quadratum K m ad qua-
dratum θ o, hoc eſt, quam linea m b ad b o:
erit σ centrum
20. primi
conicorũ
magnitudinis compoſitæ ex cylindris K ν, θ λ.
& cum linea
m b ſit dupla b o, erit &
μ σ ipſius σ ν dupla. præterea quo-
niam cylindri y z centrum grauitatis eſt π, linea σ π ita diui
ſa in τ, ut σ τ ad τ π eam habeat proportionem, quam cylin
drus y z ad duos cylindros K ν, θ λ:
erit τ centrum magnitu
dinis, quæ ex dictis tribus cylindris conſtat.
cylindrus au-
tẽ y z ad cylindrum θ λ eſt, ut linea n b ad b o, hoc eſt ut 3
ad 1:
& ad cylindrum k ν, ut n b ad b m, uidelicet ut 3 ad 2.
quare y z cylĩdrus duobus cylindris k ν, θ λ æqualis erit. &
propterea linea σ τ æqualis ipſi τ π.
denique cylindri a x
centrum grauitatis eſt punctum ρ.
& cum τ ζ diuiſa fuerit
in proportionem, quam habet cylindrus a x ad tres cy-
lindros y z, _k_ ν, θ λ:
erit in eo puncto centrum grauitatis
totius figuræ circũſcriptæ.
Sed cylindrus a x ad ipſum y z
eſt ut linea d b ad b n:
hoc eſt ut 4 ad 3: & duo cylindri _k_ ν
θ λ cylindro y z ſunt æquales.
cylindrns igitur a x ad tres
iam dictos cylindros eſt ut 2 ad 3.
Sed quoniã μ σ eſt dua-
rum partium, &
σ ν unius, qualium μ π eſt ſex; erit σ π par-
tium quatuor:
proptereaq; τ π duarum, & ν π, hoc eſt π ρ
trium.
quare ſequitur ut punctum π totius figuræ circum
ſcriptæ ſit centrum.
Itaque fiat ν υ ad υ π, ut μ σ ad σ ν. & υ ρ
bifariam diuidatur in φ.
Similiter ut in circumſcripta figu
ra oſtendetur centrum magnitudinis compoſitæ ex cylin-

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index