Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
21 5
22
23 6
24
25 7
26
27 8
28
29 9
30
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
< >
page |< < of 213 > >|
36ARCHIMEDIS angulus b n f œqualis angulo o g f: quòd cum ſit g o perpendi-
1129, primi cularis ad e f, &
h n ad eandem perpendicularis erit. quod de-
monstrare oportebat.
Et quod in humido eſt ſurſum ſeretur ſecundum per-
22G pendicularem, quæ per b ducta eſtipſi rt æquidiſtans.
]
_Cur hoc quidem ſurſum, illud uero deorſum per lineam perpen-_
_dicularem feratur, diximus ſupra in octauam primi libri buius.
qua_
_re neque in hac, neque in alijs, quæ ſequuntur, eadem iterare neceſſa_
_rium exiſtimauimus._
PROPOSITIO III.
Recta portio conoidis rectanguli quando
axem habuerit minorem, quam ſeſquialterum
eius, quæ uſque ad axem, quamcunque propor-
tionem habens ad humidum in grauitate;
demiſ-
ſa in humidum, ita ut baſis ipſius tota ſit in humi
do;
& poſita inclinata, non manebit inclinata, ſed
ita reſtituetur, ut axis ipſius ſecundum perpendi
cularem fiat.
DEMITTATVR enim aliqua portio in humidum,
qualis dicca eſt:
ſitq; ipſius baſis in humido: & ſecta ipſa
plano per axẽ, recto ad ſuperficiẽ humidi, ſit ſectio a p ol
rectanguli coniſectio:
axis portionis, & ſectionis diame-
ter p f:
ſuperficiei autem humidi ſectio ſit is. Quòd ſi incli
nata iaceat portio, non erit axis ſecundum perpendicula-
rem.
ergo p f cum is angulos rectos non faciet. Itaque
ducatur linea quædã k ω æquidiſtans ipſi is;
contingensq;
ſectionẽ ap ol in o: & ſolidæ quidẽ magnitudinis a p o l
ſit r grauitatis centrum:
ipſius autem i p o s centrum

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index