Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < of 213 > >|
34ARCHIMEDIS
_Erit r o minor, quàm, quæ uſque ad axem]_ Ex decima
11E propoſitione quinti libri elementorum.
Linea, quæ uſque ad axem
apud Archimedem, eſt dimidia eius, iuxta quam poſſunt, quæ à ſe-
ctione ducuntur;
ut ex quarta propoſitione libri de conoidibus, &
ſphæroidibus apparet.
cur uero ita appellata ſit, nos in commentarijs
in eam editis tradidimus.
_Quare angulus r p ω acutus erit]_ producatur linea n o ad
22F h, ut ſit r h æqualis ei, quæ uſque ad axem.
ſi igitur à puncto h du-
catur linea ad rectos angulos ipſi n h, conueniet cum f p extra ſe-
ctionem:
ducta enim per o ipſi a l æquidiſtans, extra ſectionem ca
dit ex decima ſepti-
20[Figure 20] ma primi libri coni-
corum.
Itaque con-
ueniat in u.
& quo
niam f p est æqui-
distans diametro;
h u uero ad diame-
trum perpendicula-
ris;
& r h æqualis
ei, quæ uſq;
ad axẽ,
linea à puncto r ad
u ducta angulos re-
ctos faciet cum ea, quæ ſectionem in puncto p contingit, hoc eſt cum
k ω, ut mox demonstrabitur.
quare perpendicularis r t inter p &
ω cadet;
erítque r p ω angulus acutus.
Sit rectanguli coni ſectio, ſeu parabole a b c, cuius
diameter b d:
atque ipſam contingat linea e f in pun-
cto g:
ſumatur autem in diametro b d linea h k æqua-
lis ei, quæ uſque ad axem:
& per g ducta g l, diame-
tro æquidistante, à puncto _k_ ad rectos angulos ipſi b d
ducatur _k_ m, ſecans g l in m.
Dico lineam ab h

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index