Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < (10) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
æqualis magnitudini f a; ſitq, ipſi f æqualis n: & ipſi a æ-
qualis i.
magnitudinis autem f a grauitas ſit b: & magni-
tudinis n i grauitas o r;
& ipſius i ſit r. magnitudo igi-
tur f a ad n i eam proportionem habet, quam grauitas b
ad grauitatem or.
Sed quoniam magnitudo f a in humi-
dum demiſſa leuior eſt humido;
patet tantam humidi mo-
lem, quanta eſt pars magnitudin_i_s demerſa, eandem quam
magnitudo f a habere grauitatem.
hoc enim ſuperius de-
5. priml
huius.
monſtratum eſt.
Atipſi a reſpondet humidum i, cuius qui
dem grauitas eſt r;
& ipſius f a grauitas b. ergo b graui-
tas eius, quod habet molem æqualem toti magnitudini
f a, æqualis erit grauitati humidi i, uidelicetipſi r.
Et quo
niam ut magnitudo f a ad humidum n i ſibi reſpondens,
ita eſt b ad o r:
eſt autem b æqualis ipſi r: & utr ad o r, ita
i ad n i;
& a ad f a. Sequitur ut f a ad humidum æqualis
11. quintamolis eam in grauitate proportionem habeat, quam ma-
gnitudo a habet ad f a.
quod demonſtrare oportebat.

PROPOSITIO II.

Recta portio conoidis rectanguli, quando
Aaxem habuerit minorem, quam ſeſquialterum
eius, quæ uſque ad axem, quamcunque propor-
tionem habens ad humidum in grauitate;
demiſ
ſa in humidum, ita ut baſis ipſius humidum non
contingat;
& poſita inelinata, non manebit incli
nata;
ſed recta reſtituetur. Rectam dico conſi-
ſtere talem portionem, quando planum quod ip
ſam ſecuit, ſuperficiei humidi fuerit æquidiſtans.
SIT portio rectanguli conoidis, qualis dicta eſt; & ia-

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index