Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < (15) of 213 > >|
14115DE CENTRO GRAVIT. SOLID. bere proportionem, quam ſpacium g h ad dictã
figuram, hoc modo demonſtrabimus.
Intelligatur circulus, uel ellipſis x æqualis figuræ rectili-
neæ in g h ſpacio deſcriptæ:
& ab x conſtituatur conus, uel
95[Figure 95] coni portio, altitudinẽ habens eandẽ, quã cylindrus uel cy
lindri portio c e.
Sit deinde rectilinea figura, in quay eade,
quæ in ſpacio g h deſcripta eſt:
& ab hac pyramis æquealta
conſtituatur.
Dico conũ uel coni portionẽ x pyramidiy æ-
qualẽ eſſe.
niſi enim ſit æqualis, uel maior, uel minor erit.
Sit primum maior, et exuperet ſolido z. Itaque in circu
lo, uel ellipſi x deſcribatur figura rectilinea;
& in ea pyra-
mis eandem, quam conus, uel coni portio altitudinem ha-
bens, ita ut portiones relictæ minores ſint ſolido z, quem-
admodum docetur in duodecimo libro elementorum pro
poſitione undecima.
erit pyramis x adhuc pyramide y ma
ior.
& quoniam piramides æque altæ inter ſe ſunt, ſicuti ba
116. duode-
cimi.
ſes;
pyramis x ad piramidem y eandem proportionem ha-
bet, quàm figura rectilinea x ad figuram y.
Sed ſigura

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index