Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
1
2
3
4
5
6
7
8
9
10
11
12
13
1
14
15
2
16
17
3
18
19
4
20
21
5
22
23
6
24
25
7
26
27
8
28
29
9
30
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(18)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div227
"
type
="
section
"
level
="
1
"
n
="
76
">
<
p
>
<
s
xml:id
="
echoid-s3729
"
xml:space
="
preserve
">
<
pb
o
="
18
"
file
="
0147
"
n
="
147
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
tione quarta Apollonius demonſtrauit. </
s
>
<
s
xml:id
="
echoid-s3730
"
xml:space
="
preserve
">Si igitur à ſingu-
<
lb
/>
lis horum circulorum, duo cylindri fiant; </
s
>
<
s
xml:id
="
echoid-s3731
"
xml:space
="
preserve
">unus quidem ad
<
lb
/>
baſis partes; </
s
>
<
s
xml:id
="
echoid-s3732
"
xml:space
="
preserve
">alter ad partes uerticis: </
s
>
<
s
xml:id
="
echoid-s3733
"
xml:space
="
preserve
">inſcripta erit in co-
<
lb
/>
no ſolida quædam figura, & </
s
>
<
s
xml:id
="
echoid-s3734
"
xml:space
="
preserve
">altera circumſcripta ex cylin-
<
lb
/>
dris æqualem altitudinem habentibus conſtans; </
s
>
<
s
xml:id
="
echoid-s3735
"
xml:space
="
preserve
">quorum
<
lb
/>
unuſquiſque, qui in
<
lb
/>
<
figure
xlink:label
="
fig-0147-01
"
xlink:href
="
fig-0147-01a
"
number
="
100
">
<
image
file
="
0147-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0147-01
"/>
</
figure
>
figura inſcripta con-
<
lb
/>
tinetur æqualis eſt ei,
<
lb
/>
qui ab eodem fit cir-
<
lb
/>
culo in figura circũ-
<
lb
/>
ſcripta. </
s
>
<
s
xml:id
="
echoid-s3736
"
xml:space
="
preserve
">Itaque cylin
<
lb
/>
drus o p æqualis eſt
<
lb
/>
cylindro o n; </
s
>
<
s
xml:id
="
echoid-s3737
"
xml:space
="
preserve
">cylin-
<
lb
/>
drus r s cylĩdro r q;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3738
"
xml:space
="
preserve
">cylindrus u x cylin-
<
lb
/>
dro u t cſt æqualis; </
s
>
<
s
xml:id
="
echoid-s3739
"
xml:space
="
preserve
">
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3740
"
xml:space
="
preserve
">alii aliis ſimiliter. </
s
>
<
s
xml:id
="
echoid-s3741
"
xml:space
="
preserve
">
<
lb
/>
quare conſtat circũ-
<
lb
/>
ſcriptam figuram ſu-
<
lb
/>
perare inſcriptam cy
<
lb
/>
lindro, cuius baſis eſt
<
lb
/>
circulus circa diametrum a c, & </
s
>
<
s
xml:id
="
echoid-s3742
"
xml:space
="
preserve
">axis d e. </
s
>
<
s
xml:id
="
echoid-s3743
"
xml:space
="
preserve
">atque hic eſtmi-
<
lb
/>
nor ſolida magnitudine propoſita.</
s
>
<
s
xml:id
="
echoid-s3744
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div229
"
type
="
section
"
level
="
1
"
n
="
77
">
<
head
xml:id
="
echoid-head84
"
xml:space
="
preserve
">PROBLEMA III. PROPOSITIO XII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3745
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Data</
emph
>
coni portione, poteſt ſolida quædam
<
lb
/>
figura inſcribi, & </
s
>
<
s
xml:id
="
echoid-s3746
"
xml:space
="
preserve
">altera circumſcribi ex cylindri
<
lb
/>
portionibus æqualem altitudinem habentibus;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3747
"
xml:space
="
preserve
">ita ut circumſcripta inſcriptam exuperet, magni
<
lb
/>
tudine, quæ minor ſit ſolida magnitudine pro-
<
lb
/>
poſita.</
s
>
<
s
xml:id
="
echoid-s3748
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>