Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
1
2
3
4
5
6
7
8
9
10
11
12
13
1
14
15
2
16
17
3
18
19
4
20
21
5
22
23
6
24
25
7
26
27
8
28
29
9
30
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div24
"
type
="
section
"
level
="
1
"
n
="
17
">
<
p
>
<
s
xml:id
="
echoid-s366
"
xml:space
="
preserve
">
<
pb
file
="
0024
"
n
="
24
"
rhead
="
ARCHIMEDIS
"/>
in linea ft. </
s
>
<
s
xml:id
="
echoid-s367
"
xml:space
="
preserve
">nam ſit primum figura maior dimidia ſphære:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s368
"
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:id
="
echoid-s369
"
xml:space
="
preserve
">in dimidia ſphæra ſphæræ centrum t; </
s
>
<
s
xml:id
="
echoid-s370
"
xml:space
="
preserve
">in minori por-
<
lb
/>
tioneſit centrum p; </
s
>
<
s
xml:id
="
echoid-s371
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s372
"
xml:space
="
preserve
">in maiori _k_: </
s
>
<
s
xml:id
="
echoid-s373
"
xml:space
="
preserve
">per _k_ uero, & </
s
>
<
s
xml:id
="
echoid-s374
"
xml:space
="
preserve
">terræ cen
<
lb
/>
trum l ducatur _k_ l ſecans circunferentiam e f h in pun-
<
lb
/>
cto n. </
s
>
<
s
xml:id
="
echoid-s375
"
xml:space
="
preserve
">Quoniam igitur unaquæque ſphæræportio axem
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0024-01
"
xlink:href
="
note-0024-01a
"
xml:space
="
preserve
">C</
note
>
habet in linea, quæ à cẽtro ſphæræ ad cius baſim perpen-
<
lb
/>
dicularis ducitur: </
s
>
<
s
xml:id
="
echoid-s376
"
xml:space
="
preserve
">habetq; </
s
>
<
s
xml:id
="
echoid-s377
"
xml:space
="
preserve
">in axe grauitatis centrum:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s378
"
xml:space
="
preserve
">portionis in humido demerſæ, quæ ex duabus ſphæræ
<
lb
/>
portionibus conſtat, axis erit in perpendiculari per _k_ du-
<
lb
/>
cta. </
s
>
<
s
xml:id
="
echoid-s379
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s380
"
xml:space
="
preserve
">idcirco centrum grauitatis ipſius erit in linea n _k_,
<
lb
/>
quod ſit r. </
s
>
<
s
xml:id
="
echoid-s381
"
xml:space
="
preserve
">ſed totius portionis grauitatis centrum eſt in li
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0024-02
"
xlink:href
="
note-0024-02a
"
xml:space
="
preserve
">D</
note
>
nea f t inter _k_, & </
s
>
<
s
xml:id
="
echoid-s382
"
xml:space
="
preserve
">f, quod ſit x. </
s
>
<
s
xml:id
="
echoid-s383
"
xml:space
="
preserve
">reliquæ ergo figuræ, quæ eſt
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0024-03
"
xlink:href
="
note-0024-03a
"
xml:space
="
preserve
">E</
note
>
extra humidum, centrum erit in linea r x producta ad par
<
lb
/>
tes x; </
s
>
<
s
xml:id
="
echoid-s384
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s385
"
xml:space
="
preserve
">aſſumpta ex ea, linea quadam, quæ ad r x eandem
<
lb
/>
proportionem habeat, quam grauitas portionis in humi-
<
lb
/>
do demerſæ habet ad grauitatem figuræ, quæ eſt extra hu-
<
lb
/>
midum. </
s
>
<
s
xml:id
="
echoid-s386
"
xml:space
="
preserve
">Sit autem s centrum dictæ figuræ: </
s
>
<
s
xml:id
="
echoid-s387
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s388
"
xml:space
="
preserve
">per s duca-
<
lb
/>
tur perpendicularis l s. </
s
>
<
s
xml:id
="
echoid-s389
"
xml:space
="
preserve
">Feretur ergo grauitas figuræ qui-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0024-04
"
xlink:href
="
note-0024-04a
"
xml:space
="
preserve
">F</
note
>
dem, quæ extra humidum per rectam s l deorſum; </
s
>
<
s
xml:id
="
echoid-s390
"
xml:space
="
preserve
">portio
<
lb
/>
nis autem, quæ in humido, ſurſum per rectam r l. </
s
>
<
s
xml:id
="
echoid-s391
"
xml:space
="
preserve
">quare
<
lb
/>
non manebit figura: </
s
>
<
s
xml:id
="
echoid-s392
"
xml:space
="
preserve
">ſed partes eius, quæ ſunt ad e, deor-
<
lb
/>
ſum; </
s
>
<
s
xml:id
="
echoid-s393
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s394
"
xml:space
="
preserve
">quæ ad h ſurſum ſerẽtur: </
s
>
<
s
xml:id
="
echoid-s395
"
xml:space
="
preserve
">idq; </
s
>
<
s
xml:id
="
echoid-s396
"
xml:space
="
preserve
">cõtinenter fiet, quoad
<
lb
/>
ſ t ſit ſecundum perpendicularem. </
s
>
<
s
xml:id
="
echoid-s397
"
xml:space
="
preserve
">Eodem modo in aliis
<
lb
/>
portionibus idem demonſtrabitur.</
s
>
<
s
xml:id
="
echoid-s398
"
xml:space
="
preserve
">]</
s
>
</
p
>
<
figure
number
="
13
">
<
image
file
="
0024-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0024-01
"/>
</
figure
>
</
div
>
</
text
>
</
echo
>