Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
101
43
102
103
104
105
106
107
108
109
110
111
112
113
1
114
115
2
116
117
3
118
119
4
120
121
5
122
123
6
124
125
7
126
127
8
128
129
9
130
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
FED. COMMANDINI
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
96
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
file
="
0204
"
n
="
204
"
rhead
="
FED. COMMANDINI
"/>
ioris baſis ad quadratum minoris: </
s
>
<
s
xml:space
="
preserve
">centrum ſit in
<
lb
/>
eo axis puncto, quo ita diuiditur ut pars, quæ mi
<
lb
/>
norem baſim attingit ad alteram partem eandem
<
lb
/>
proportionem habeat, quam dempto quadrato
<
lb
/>
minoris baſis à duabus tertiis quadrati maioris,
<
lb
/>
habet id, quod reliquum eſt unà cum portione à
<
lb
/>
tertia quadrati maioris parte dempta, ad reliquà
<
lb
/>
eiuſdem tertiæ portionem.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:space
="
preserve
">SIT fruſtum à portione rectanguli conoidis abſciſſum
<
lb
/>
a b c d, cuius maior baſis circulus, uel ellipſis circa diame-
<
lb
/>
trum b c, minor circa diametrum a d; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">axis e f. </
s
>
<
s
xml:space
="
preserve
">deſcriba-
<
lb
/>
tur autem portio conoidis, à quo illud abſciſſum eſt, & </
s
>
<
s
xml:space
="
preserve
">pla-
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0204-01a
"
xlink:href
="
fig-0204-01
"/>
no per axem ducto ſecetur; </
s
>
<
s
xml:space
="
preserve
">ut ſuperficiei ſectio ſit parabo-
<
lb
/>
le b g c, cuius diameter, & </
s
>
<
s
xml:space
="
preserve
">axis portionis g f: </
s
>
<
s
xml:space
="
preserve
">deinde g f diui
<
lb
/>
datur in puncto h, ita ut g h ſit dupla h f: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">rurſus g e in ean
<
lb
/>
dem proportionem diuidatur: </
s
>
<
s
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:space
="
preserve
">g _k_ ipſius k e dupla. </
s
>
<
s
xml:space
="
preserve
">Iã
<
lb
/>
ex iis, quæ proxime demonſtrauimus, conſtat centrum gra
<
lb
/>
uitatis portionis b g c eſſe h punctum: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">portionis a g c
<
lb
/>
punctum k. </
s
>
<
s
xml:space
="
preserve
">ſumpto igitur infra h punctol, ita ut k h ad h l</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>