Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
11
12
13 1
14
15 2
16
17 3
18
19 4
20
21 5
22
23 6
24
25 7
26
27 8
28
29 9
30
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div24" type="section" level="1" n="17">
          <p>
            <s xml:id="echoid-s366" xml:space="preserve">
              <pb file="0024" n="24" rhead="ARCHIMEDIS"/>
            in linea ft. </s>
            <s xml:id="echoid-s367" xml:space="preserve">nam ſit primum figura maior dimidia ſphære:
              <lb/>
            </s>
            <s xml:id="echoid-s368" xml:space="preserve">ſitq; </s>
            <s xml:id="echoid-s369" xml:space="preserve">in dimidia ſphæra ſphæræ centrum t; </s>
            <s xml:id="echoid-s370" xml:space="preserve">in minori por-
              <lb/>
            tioneſit centrum p; </s>
            <s xml:id="echoid-s371" xml:space="preserve">& </s>
            <s xml:id="echoid-s372" xml:space="preserve">in maiori _k_: </s>
            <s xml:id="echoid-s373" xml:space="preserve">per _k_ uero, & </s>
            <s xml:id="echoid-s374" xml:space="preserve">terræ cen
              <lb/>
            trum l ducatur _k_ l ſecans circunferentiam e f h in pun-
              <lb/>
            cto n. </s>
            <s xml:id="echoid-s375" xml:space="preserve">Quoniam igitur unaquæque ſphæræportio axem
              <lb/>
              <note position="left" xlink:label="note-0024-01" xlink:href="note-0024-01a" xml:space="preserve">C</note>
            habet in linea, quæ à cẽtro ſphæræ ad cius baſim perpen-
              <lb/>
            dicularis ducitur: </s>
            <s xml:id="echoid-s376" xml:space="preserve">habetq; </s>
            <s xml:id="echoid-s377" xml:space="preserve">in axe grauitatis centrum:
              <lb/>
            </s>
            <s xml:id="echoid-s378" xml:space="preserve">portionis in humido demerſæ, quæ ex duabus ſphæræ
              <lb/>
            portionibus conſtat, axis erit in perpendiculari per _k_ du-
              <lb/>
            cta. </s>
            <s xml:id="echoid-s379" xml:space="preserve">& </s>
            <s xml:id="echoid-s380" xml:space="preserve">idcirco centrum grauitatis ipſius erit in linea n _k_,
              <lb/>
            quod ſit r. </s>
            <s xml:id="echoid-s381" xml:space="preserve">ſed totius portionis grauitatis centrum eſt in li
              <lb/>
              <note position="left" xlink:label="note-0024-02" xlink:href="note-0024-02a" xml:space="preserve">D</note>
            nea f t inter _k_, & </s>
            <s xml:id="echoid-s382" xml:space="preserve">f, quod ſit x. </s>
            <s xml:id="echoid-s383" xml:space="preserve">reliquæ ergo figuræ, quæ eſt
              <lb/>
              <note position="left" xlink:label="note-0024-03" xlink:href="note-0024-03a" xml:space="preserve">E</note>
            extra humidum, centrum erit in linea r x producta ad par
              <lb/>
            tes x; </s>
            <s xml:id="echoid-s384" xml:space="preserve">& </s>
            <s xml:id="echoid-s385" xml:space="preserve">aſſumpta ex ea, linea quadam, quæ ad r x eandem
              <lb/>
            proportionem habeat, quam grauitas portionis in humi-
              <lb/>
            do demerſæ habet ad grauitatem figuræ, quæ eſt extra hu-
              <lb/>
            midum. </s>
            <s xml:id="echoid-s386" xml:space="preserve">Sit autem s centrum dictæ figuræ: </s>
            <s xml:id="echoid-s387" xml:space="preserve">& </s>
            <s xml:id="echoid-s388" xml:space="preserve">per s duca-
              <lb/>
            tur perpendicularis l s. </s>
            <s xml:id="echoid-s389" xml:space="preserve">Feretur ergo grauitas figuræ qui-
              <lb/>
              <note position="left" xlink:label="note-0024-04" xlink:href="note-0024-04a" xml:space="preserve">F</note>
            dem, quæ extra humidum per rectam s l deorſum; </s>
            <s xml:id="echoid-s390" xml:space="preserve">portio
              <lb/>
            nis autem, quæ in humido, ſurſum per rectam r l. </s>
            <s xml:id="echoid-s391" xml:space="preserve">quare
              <lb/>
            non manebit figura: </s>
            <s xml:id="echoid-s392" xml:space="preserve">ſed partes eius, quæ ſunt ad e, deor-
              <lb/>
            ſum; </s>
            <s xml:id="echoid-s393" xml:space="preserve">& </s>
            <s xml:id="echoid-s394" xml:space="preserve">quæ ad h ſurſum ſerẽtur: </s>
            <s xml:id="echoid-s395" xml:space="preserve">idq; </s>
            <s xml:id="echoid-s396" xml:space="preserve">cõtinenter fiet, quoad
              <lb/>
            ſ t ſit ſecundum perpendicularem. </s>
            <s xml:id="echoid-s397" xml:space="preserve">Eodem modo in aliis
              <lb/>
            portionibus idem demonſtrabitur.</s>
            <s xml:id="echoid-s398" xml:space="preserve">]</s>
          </p>
          <figure number="13">
            <image file="0024-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0024-01"/>
          </figure>
        </div>
      </text>
    </echo>