Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
111
112
113
1
114
115
2
116
117
3
118
119
4
120
121
5
122
123
6
124
125
7
126
127
8
128
129
9
130
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
FED. COMMANDINI
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
64
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
file
="
0116
"
n
="
116
"
rhead
="
FED. COMMANDINI
"/>
quæ quidem in centro conueniunt. </
s
>
<
s
xml:space
="
preserve
">idem igitur eſt centrum
<
lb
/>
grauitatis quadrati, & </
s
>
<
s
xml:space
="
preserve
">circuli centrum.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
2
">
<
figure
xlink:label
="
fig-0115-02
"
xlink:href
="
fig-0115-02a
">
<
image
file
="
0115-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0115-02
"/>
</
figure
>
<
note
position
="
right
"
xlink:label
="
note-0115-04
"
xlink:href
="
note-0115-04a
"
xml:space
="
preserve
">51. tortil.</
note
>
</
div
>
<
p
>
<
s
xml:space
="
preserve
">Sit pentagonum æquilaterum, & </
s
>
<
s
xml:space
="
preserve
">æquiangulum in circu-
<
lb
/>
lo deſcriptum a b c d e: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">iun-
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0116-01a
"
xlink:href
="
fig-0116-01
"/>
cta b d, bifariamq́; </
s
>
<
s
xml:space
="
preserve
">in ſ diuiſa,
<
lb
/>
ducatur c f, & </
s
>
<
s
xml:space
="
preserve
">producatur ad
<
lb
/>
circuli circumferentiam in g;
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">quæ lineam a e in h ſecet: </
s
>
<
s
xml:space
="
preserve
">de-
<
lb
/>
inde iungantur a c, c e. </
s
>
<
s
xml:space
="
preserve
">Eodem
<
lb
/>
modo, quo ſupra demonſtra-
<
lb
/>
bimus angulum b c f æqualem
<
lb
/>
eſſe angulo d c f; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">angulos
<
lb
/>
ad f utroſque rectos: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">idcir-
<
lb
/>
colineam c f g per circuli cen
<
lb
/>
trum tranſire. </
s
>
<
s
xml:space
="
preserve
">Quoniam igi-
<
lb
/>
tur latera c b, b a, & </
s
>
<
s
xml:space
="
preserve
">c d, d e æqualia ſunt; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">æquales anguli
<
lb
/>
c b a, c d e: </
s
>
<
s
xml:space
="
preserve
">erit baſis c a baſi c e, & </
s
>
<
s
xml:space
="
preserve
">angulus b c a angulo
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0116-01a
"
xlink:href
="
note-0116-01
"/>
d c e æqualis. </
s
>
<
s
xml:space
="
preserve
">ergo & </
s
>
<
s
xml:space
="
preserve
">reliquus a c h, reliquo e c h. </
s
>
<
s
xml:space
="
preserve
">eſt au-
<
lb
/>
tem c h utrique triangulo a c h, e c h communis. </
s
>
<
s
xml:space
="
preserve
">quare
<
lb
/>
baſis a h æqualis eſt baſi h e: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">anguli, quiad h recti: </
s
>
<
s
xml:space
="
preserve
">ſuntq́;
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">recti, qui ad f. </
s
>
<
s
xml:space
="
preserve
">ergo lineæ a e, b d inter ſe ſe æquidiſtant. </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0116-02a
"
xlink:href
="
note-0116-02
"/>
Itaque cum trapezij a b d e latera b d, a e æquidiſtantia à li
<
lb
/>
nea fh bifariam diuidantur; </
s
>
<
s
xml:space
="
preserve
">centrum grauitatis ipſius erit
<
lb
/>
in linea f h, ex ultima eiuſdem libri Archimedis. </
s
>
<
s
xml:space
="
preserve
">Sed trian-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0116-03a
"
xlink:href
="
note-0116-03
"/>
guli b c d centrum grauitatis eſt in linea c f. </
s
>
<
s
xml:space
="
preserve
">ergo in eadem
<
lb
/>
linea c h eſt centrum grauitatis trapezij a b d e, & </
s
>
<
s
xml:space
="
preserve
">trian-
<
lb
/>
guli b c d: </
s
>
<
s
xml:space
="
preserve
">hoc eſt pentagoni ipſius centrum & </
s
>
<
s
xml:space
="
preserve
">centrum
<
lb
/>
circuli. </
s
>
<
s
xml:space
="
preserve
">Rurſus ſi iuncta a d, bifariamq́; </
s
>
<
s
xml:space
="
preserve
">ſecta in k, duca-
<
lb
/>
tur e k l: </
s
>
<
s
xml:space
="
preserve
">demonſtrabimus in ipſa utrumque centrum in
<
lb
/>
eſſe. </
s
>
<
s
xml:space
="
preserve
">Sequitur ergo, ut punctum, in quo lineæ c g, e l con-
<
lb
/>
ueniunt, idem ſit centrum circuli, & </
s
>
<
s
xml:space
="
preserve
">centrum grauitatis
<
lb
/>
pentagoni.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
3
">
<
figure
xlink:label
="
fig-0116-01
"
xlink:href
="
fig-0116-01a
">
<
image
file
="
0116-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0116-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0116-01
"
xlink:href
="
note-0116-01a
"
xml:space
="
preserve
">4. Primi.</
note
>
<
note
position
="
left
"
xlink:label
="
note-0116-02
"
xlink:href
="
note-0116-02a
"
xml:space
="
preserve
">08. primi.</
note
>
<
note
position
="
left
"
xlink:label
="
note-0116-03
"
xlink:href
="
note-0116-03a
"
xml:space
="
preserve
">13. Archi-
<
lb
/>
medis.</
note
>
</
div
>
<
p
>
<
s
xml:space
="
preserve
">Sit hexagonum a b c d e f æquilaterum, & </
s
>
<
s
xml:space
="
preserve
">æquiangulum
<
lb
/>
in circulo deſignatum: </
s
>
<
s
xml:space
="
preserve
">iunganturq́; </
s
>
<
s
xml:space
="
preserve
">b d, a c: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">bifariam ſe-</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>