Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb file="0134" n="134" rhead="FED. COMMANDINI"/>
            t u, x y ipſi g h æquidiſtare. </s>
            <s xml:space="preserve">Et quoniam triangula, quæ
              <lb/>
            fiunt à lineis K y, y u, u s, s h æqualia ſuntinter ſe, & </s>
            <s xml:space="preserve">ſimilia
              <lb/>
            triangulo K m h: </s>
            <s xml:space="preserve">habebit triangulum K m h ad triangulũ
              <lb/>
              <anchor type="note" xlink:label="note-0134-01a" xlink:href="note-0134-01"/>
            K δ y duplam proportionem eius, quæ eſt lineæ k h ad K y.
              <lb/>
            </s>
            <s xml:space="preserve">ſed _K_ h poſita eſt quadrupla ipſius k y. </s>
            <s xml:space="preserve">ergo triangulum
              <lb/>
            κ m h ad triangulum _K_ δ y eãdem proportionem habebit,
              <lb/>
            quam ſexdecim ad unũ & </s>
            <s xml:space="preserve">ad quatuor triangula k δ y, y u,
              <lb/>
            u s, s α h habebit eandem, quam fexdecim ad quatuor, hoc
              <lb/>
            eſt quam h K ad κ y: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſimiliter eandem habere demonſtra
              <lb/>
            bitur trian-
              <lb/>
              <anchor type="figure" xlink:label="fig-0134-01a" xlink:href="fig-0134-01"/>
            gulum κ m g
              <lb/>
            ad quatuor
              <lb/>
            triãgula K δ
              <lb/>
            x, x γ t, t β r,
              <lb/>
            r z g. </s>
            <s xml:space="preserve">quare
              <lb/>
              <anchor type="note" xlink:label="note-0134-02a" xlink:href="note-0134-02"/>
            totum trian
              <lb/>
            gulum K g h
              <lb/>
            ad omnia tri
              <lb/>
            angula g z r,
              <lb/>
            r β t, t γ x, x δ
              <lb/>
            _K_, K δ y, y u,
              <lb/>
            u s, s α h ita
              <lb/>
            erit, ut h κ a d
              <lb/>
            k y, hoc eſt
              <lb/>
            ut h m ad m
              <lb/>
            q. </s>
            <s xml:space="preserve">Si igitur in
              <lb/>
            triangulis a b c, d e f deſcribantur figuræ ſimiles ei, quæ de-
              <lb/>
            ſcripta eſt in g h K triangulo: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per lineas ſibi reſp onden-
              <lb/>
            tes plana ducantur: </s>
            <s xml:space="preserve">totum priſma a f diuiſum eritin tria
              <lb/>
            ſolida parallelepipeda y γ, u β, s z, quorum baſes ſunt æ qua
              <lb/>
            les & </s>
            <s xml:space="preserve">ſimiles ipſis parallelogrammis y γ, u β, s z: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in octo
              <lb/>
            priſmata g z r, r β t, t γ x, x δ K, κ δ y, y u, u s, s α h: </s>
            <s xml:space="preserve">quorum
              <lb/>
            item baſes æquales, & </s>
            <s xml:space="preserve">ſimiles ſunt dictis triangulis; </s>
            <s xml:space="preserve">altitu-
              <lb/>
            do autem in omnibus, totius priſmatis altitudini æ qualis.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>