Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3452" xml:space="preserve">
              <pb file="0136" n="136" rhead="FED. COMMANDINI"/>
            medis. </s>
            <s xml:id="echoid-s3453" xml:space="preserve">ergo punctum v extra p riſima a f poſitum, centrũ
              <lb/>
            erit magnitudinis cõpoſitæ e x omnibus priſmatibus g z r,
              <lb/>
            r β t, t γ x, x δ k, k δ y, y u, u s, s α h, quod fieri nullo modo po
              <lb/>
            teſt. </s>
            <s xml:id="echoid-s3454" xml:space="preserve">eſt enim ex diſſinitione centrum grauitatis ſolidæ figu
              <lb/>
            ræ intra ipſam poſitum, non extra. </s>
            <s xml:id="echoid-s3455" xml:space="preserve">quare relinquitur, ut cẽ
              <lb/>
            trum grauitatis priſmatis ſit in linea K m. </s>
            <s xml:id="echoid-s3456" xml:space="preserve">Rurſus b c bifa-
              <lb/>
            riam in ξ diuidatur: </s>
            <s xml:id="echoid-s3457" xml:space="preserve">& </s>
            <s xml:id="echoid-s3458" xml:space="preserve">ducta a ξ, per ipſam, & </s>
            <s xml:id="echoid-s3459" xml:space="preserve">per lineam
              <lb/>
            a g d plan um ducatur; </s>
            <s xml:id="echoid-s3460" xml:space="preserve">quod priſma ſecet: </s>
            <s xml:id="echoid-s3461" xml:space="preserve">faciatq; </s>
            <s xml:id="echoid-s3462" xml:space="preserve">in paral
              <lb/>
            lelogrammo b f ſectionem ξ π di uidet punctum π lineam
              <lb/>
            quoque c f bifariam: </s>
            <s xml:id="echoid-s3463" xml:space="preserve">& </s>
            <s xml:id="echoid-s3464" xml:space="preserve">erit p lani eius, & </s>
            <s xml:id="echoid-s3465" xml:space="preserve">trianguli g h K
              <lb/>
            communis ſectio g u; </s>
            <s xml:id="echoid-s3466" xml:space="preserve">quòd p ũctum u in inedio lineæ h K
              <lb/>
              <figure xlink:label="fig-0136-01" xlink:href="fig-0136-01a" number="91">
                <image file="0136-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0136-01"/>
              </figure>
            poſitum ſi t. </s>
            <s xml:id="echoid-s3467" xml:space="preserve">Similiter demonſtrabimus centrum grauita-
              <lb/>
            tis priſm atis in ipſa g u ineſſe. </s>
            <s xml:id="echoid-s3468" xml:space="preserve">ſit autem planorum c f n l,
              <lb/>
            a d π ξ communis ſectio linea ρ ο τ quæ quidem priſmatis
              <lb/>
            axis erit, cum tranſeat per centra grauitatis triangulorum
              <lb/>
            a b c, g h k, d e f, ex quartadecima eiuſdem. </s>
            <s xml:id="echoid-s3469" xml:space="preserve">ergo centrum
              <lb/>
            grauitatis pri ſmatis a f eſt punctum σ, centrum </s>
          </p>
        </div>
      </text>
    </echo>