Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
121
5
122
123
6
124
125
7
126
127
8
128
129
9
130
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3452
"
xml:space
="
preserve
">
<
pb
file
="
0136
"
n
="
136
"
rhead
="
FED. COMMANDINI
"/>
medis. </
s
>
<
s
xml:id
="
echoid-s3453
"
xml:space
="
preserve
">ergo punctum v extra p riſima a f poſitum, centrũ
<
lb
/>
erit magnitudinis cõpoſitæ e x omnibus priſmatibus g z r,
<
lb
/>
r β t, t γ x, x δ k, k δ y, y u, u s, s α h, quod fieri nullo modo po
<
lb
/>
teſt. </
s
>
<
s
xml:id
="
echoid-s3454
"
xml:space
="
preserve
">eſt enim ex diſſinitione centrum grauitatis ſolidæ figu
<
lb
/>
ræ intra ipſam poſitum, non extra. </
s
>
<
s
xml:id
="
echoid-s3455
"
xml:space
="
preserve
">quare relinquitur, ut cẽ
<
lb
/>
trum grauitatis priſmatis ſit in linea K m. </
s
>
<
s
xml:id
="
echoid-s3456
"
xml:space
="
preserve
">Rurſus b c bifa-
<
lb
/>
riam in ξ diuidatur: </
s
>
<
s
xml:id
="
echoid-s3457
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3458
"
xml:space
="
preserve
">ducta a ξ, per ipſam, & </
s
>
<
s
xml:id
="
echoid-s3459
"
xml:space
="
preserve
">per lineam
<
lb
/>
a g d plan um ducatur; </
s
>
<
s
xml:id
="
echoid-s3460
"
xml:space
="
preserve
">quod priſma ſecet: </
s
>
<
s
xml:id
="
echoid-s3461
"
xml:space
="
preserve
">faciatq; </
s
>
<
s
xml:id
="
echoid-s3462
"
xml:space
="
preserve
">in paral
<
lb
/>
lelogrammo b f ſectionem ξ π di uidet punctum π lineam
<
lb
/>
quoque c f bifariam: </
s
>
<
s
xml:id
="
echoid-s3463
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3464
"
xml:space
="
preserve
">erit p lani eius, & </
s
>
<
s
xml:id
="
echoid-s3465
"
xml:space
="
preserve
">trianguli g h K
<
lb
/>
communis ſectio g u; </
s
>
<
s
xml:id
="
echoid-s3466
"
xml:space
="
preserve
">quòd p ũctum u in inedio lineæ h K
<
lb
/>
<
figure
xlink:label
="
fig-0136-01
"
xlink:href
="
fig-0136-01a
"
number
="
91
">
<
image
file
="
0136-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0136-01
"/>
</
figure
>
poſitum ſi t. </
s
>
<
s
xml:id
="
echoid-s3467
"
xml:space
="
preserve
">Similiter demonſtrabimus centrum grauita-
<
lb
/>
tis priſm atis in ipſa g u ineſſe. </
s
>
<
s
xml:id
="
echoid-s3468
"
xml:space
="
preserve
">ſit autem planorum c f n l,
<
lb
/>
a d π ξ communis ſectio linea ρ ο τ quæ quidem priſmatis
<
lb
/>
axis erit, cum tranſeat per centra grauitatis triangulorum
<
lb
/>
a b c, g h k, d e f, ex quartadecima eiuſdem. </
s
>
<
s
xml:id
="
echoid-s3469
"
xml:space
="
preserve
">ergo centrum
<
lb
/>
grauitatis pri ſmatis a f eſt punctum σ, centrum </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>