Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
121
5
122
123
6
124
125
7
126
127
8
128
129
9
130
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(15)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3584
"
xml:space
="
preserve
">
<
pb
o
="
15
"
file
="
0141
"
n
="
141
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
bere proportionem, quam ſpacium g h ad dictã
<
lb
/>
figuram, hoc modo demonſtrabimus.</
s
>
<
s
xml:id
="
echoid-s3585
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3586
"
xml:space
="
preserve
">Intelligatur circulus, uel ellipſis x æqualis figuræ rectili-
<
lb
/>
neæ in g h ſpacio deſcriptæ: </
s
>
<
s
xml:id
="
echoid-s3587
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3588
"
xml:space
="
preserve
">ab x conſtituatur conus, uel
<
lb
/>
<
figure
xlink:label
="
fig-0141-01
"
xlink:href
="
fig-0141-01a
"
number
="
95
">
<
image
file
="
0141-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0141-01
"/>
</
figure
>
coni portio, altitudinẽ habens eandẽ, quã cylindrus uel cy
<
lb
/>
lindri portio c e. </
s
>
<
s
xml:id
="
echoid-s3589
"
xml:space
="
preserve
">Sit deinde rectilinea figura, in quay eade,
<
lb
/>
quæ in ſpacio g h deſcripta eſt: </
s
>
<
s
xml:id
="
echoid-s3590
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3591
"
xml:space
="
preserve
">ab hac pyramis æquealta
<
lb
/>
conſtituatur. </
s
>
<
s
xml:id
="
echoid-s3592
"
xml:space
="
preserve
">Dico conũ uel coni portionẽ x pyramidiy æ-
<
lb
/>
qualẽ eſſe. </
s
>
<
s
xml:id
="
echoid-s3593
"
xml:space
="
preserve
">niſi enim ſit æqualis, uel maior, uel minor erit.</
s
>
<
s
xml:id
="
echoid-s3594
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3595
"
xml:space
="
preserve
">Sit primum maior, et exuperet ſolido z. </
s
>
<
s
xml:id
="
echoid-s3596
"
xml:space
="
preserve
">Itaque in circu
<
lb
/>
lo, uel ellipſi x deſcribatur figura rectilinea; </
s
>
<
s
xml:id
="
echoid-s3597
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3598
"
xml:space
="
preserve
">in ea pyra-
<
lb
/>
mis eandem, quam conus, uel coni portio altitudinem ha-
<
lb
/>
bens, ita ut portiones relictæ minores ſint ſolido z, quem-
<
lb
/>
admodum docetur in duodecimo libro elementorum pro
<
lb
/>
poſitione undecima. </
s
>
<
s
xml:id
="
echoid-s3599
"
xml:space
="
preserve
">erit pyramis x adhuc pyramide y ma
<
lb
/>
ior. </
s
>
<
s
xml:id
="
echoid-s3600
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3601
"
xml:space
="
preserve
">quoniam piramides æque altæ inter ſe ſunt, ſicuti ba
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0141-01
"
xlink:href
="
note-0141-01a
"
xml:space
="
preserve
">6. duode-
<
lb
/>
cimi.</
note
>
ſes; </
s
>
<
s
xml:id
="
echoid-s3602
"
xml:space
="
preserve
">pyramis x ad piramidem y eandem proportionem ha-
<
lb
/>
bet, quàm figura rectilinea x ad figuram y. </
s
>
<
s
xml:id
="
echoid-s3603
"
xml:space
="
preserve
">Sed ſigura </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>