Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb file="0142" n="142" rhead="FED. COMMANDINI"/>
              <anchor type="figure" xlink:label="fig-0142-01a" xlink:href="fig-0142-01"/>
            linea x cum ſit minor circulo, uel ellipſi, eſt etiam minor fi-
              <lb/>
            gura rectilinea y. </s>
            <s xml:space="preserve">ergo pyramis x pyramide y minor erit.
              <lb/>
            </s>
            <s xml:space="preserve">Sed & </s>
            <s xml:space="preserve">maior; </s>
            <s xml:space="preserve">quod fieri nõ poteſt. </s>
            <s xml:space="preserve">At ſi conus, uel coni por
              <lb/>
            tio x ponatur minor pyramide y: </s>
            <s xml:space="preserve">ſit alter conus æque al-
              <lb/>
            tus, uel altera coni portio χ ipſi pyramidi y æqualis. </s>
            <s xml:space="preserve">erit
              <lb/>
            eius baſis circulus, uel ellipſis maior circulo, uel ellipſi x,
              <lb/>
            quorum exceſſus ſit ſpacium ω. </s>
            <s xml:space="preserve">Siigitur in circulo, uel elli-
              <lb/>
            pſi χ figura rectilinea deſcribatur, ita ut portiones relictæ
              <lb/>
            ſint ω ſpacio minores, eiuſinodi figura adhuc maior erit cir
              <lb/>
            culo, uel ellipſi x, hoc eſt figura rectilinea _y_. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">p_y_ramis in
              <lb/>
            ea conſtituta minor cono, uel coni portione χ, hoc eſt mi-
              <lb/>
            nor p_y_ramide_y_. </s>
            <s xml:space="preserve">eſt ergo ut χ figura rectilinea ad figuram
              <lb/>
            rectilineam _y_, ita pyramis χ ad pyramidem _y_. </s>
            <s xml:space="preserve">quare cum
              <lb/>
            figura rectilinea χ ſit maior figura_y_: </s>
            <s xml:space="preserve">erit & </s>
            <s xml:space="preserve">p_y_ramis χ p_y_-
              <lb/>
            ramide_y_ maior. </s>
            <s xml:space="preserve">ſed erat minor; </s>
            <s xml:space="preserve">quod rurſus fieri non po-
              <lb/>
            teſt. </s>
            <s xml:space="preserve">non eſt igitur conus, uel coni portio x neque maior,
              <lb/>
            neque minor p_y_ramide_y_. </s>
            <s xml:space="preserve">ergo ipſi neceſſario eſt æqualis. </s>
            <s xml:space="preserve">
              <lb/>
            Itaque quoniam ut conus ad conum, uel coni portio ad co</s>
          </p>
        </div>
      </text>
    </echo>