Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
121
5
122
123
6
124
125
7
126
127
8
128
129
9
130
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(25)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div247
"
type
="
section
"
level
="
1
"
n
="
85
">
<
pb
o
="
25
"
file
="
0161
"
n
="
161
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
p
>
<
s
xml:id
="
echoid-s4003
"
xml:space
="
preserve
">Sint duo priſmata a e, a f, quorum eadem baſis quadri-
<
lb
/>
latera a b c d: </
s
>
<
s
xml:id
="
echoid-s4004
"
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:id
="
echoid-s4005
"
xml:space
="
preserve
">priſmatis a e altitudo e g; </
s
>
<
s
xml:id
="
echoid-s4006
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4007
"
xml:space
="
preserve
">priſmatis
<
lb
/>
a f altitudo f h. </
s
>
<
s
xml:id
="
echoid-s4008
"
xml:space
="
preserve
">Dico priſma a e ad priſma a f eam habere
<
lb
/>
proportionem, quam e g ad f h. </
s
>
<
s
xml:id
="
echoid-s4009
"
xml:space
="
preserve
">iungatur enim a c: </
s
>
<
s
xml:id
="
echoid-s4010
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4011
"
xml:space
="
preserve
">in
<
lb
/>
unoquoque priſmate duo priſmata intelligantur, quorum
<
lb
/>
baſes ſint triangu
<
lb
/>
<
figure
xlink:label
="
fig-0161-01
"
xlink:href
="
fig-0161-01a
"
number
="
115
">
<
image
file
="
0161-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0161-01
"/>
</
figure
>
la a b c, a c d. </
s
>
<
s
xml:id
="
echoid-s4012
"
xml:space
="
preserve
">habe
<
lb
/>
bunt duo priſma-
<
lb
/>
te in eadem baſi
<
lb
/>
a b c conſtituta,
<
lb
/>
proportionem eã
<
lb
/>
dem, quam ipſo-
<
lb
/>
rum altitudines e
<
lb
/>
g, f h, exiam de-
<
lb
/>
monſtratis. </
s
>
<
s
xml:id
="
echoid-s4013
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4014
"
xml:space
="
preserve
">ſi-
<
lb
/>
militer alia duo,
<
lb
/>
quæ ſunt in baſi a
<
lb
/>
c d. </
s
>
<
s
xml:id
="
echoid-s4015
"
xml:space
="
preserve
">quare totum priſma a e ad priſma a f eandem propor
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0161-01
"
xlink:href
="
note-0161-01a
"
xml:space
="
preserve
">12. quinti</
note
>
tionem habebit, quam altitudo e g ad f h altitudinem.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4016
"
xml:space
="
preserve
">Quòd cum priſmata ſint pyramidum tripla, & </
s
>
<
s
xml:id
="
echoid-s4017
"
xml:space
="
preserve
">ipſæ pyrami
<
lb
/>
des, quarum eadem eſt baſis quadrilatera, & </
s
>
<
s
xml:id
="
echoid-s4018
"
xml:space
="
preserve
">altitudo priſ-
<
lb
/>
matum altitudini æqualis, eam inter ſe proportionem ha-
<
lb
/>
bebunt, quam altitudines.</
s
>
<
s
xml:id
="
echoid-s4019
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4020
"
xml:space
="
preserve
">Si uero priſmata baſes æquales habeant, nõ eaſdem, ſint
<
lb
/>
duo eiuſmodi priſmata a e, f l: </
s
>
<
s
xml:id
="
echoid-s4021
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4022
"
xml:space
="
preserve
">ſit baſis priſmatis a e qua
<
lb
/>
drilaterum a b c d; </
s
>
<
s
xml:id
="
echoid-s4023
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4024
"
xml:space
="
preserve
">priſmatis f l quadrilaterum f g h k.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4025
"
xml:space
="
preserve
">Dico priſma a e ad priſma f l ita eſſe, ut altitudo illius ad
<
lb
/>
huius altitudinem. </
s
>
<
s
xml:id
="
echoid-s4026
"
xml:space
="
preserve
">nam ſi altitudo ſit eadem, intelligãtur
<
lb
/>
duæ pyramides a b c d e, f g h k l. </
s
>
<
s
xml:id
="
echoid-s4027
"
xml:space
="
preserve
">quæ ĩter ſe æquales erũt,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0161-02
"
xlink:href
="
note-0161-02a
"
xml:space
="
preserve
">6. duode
<
lb
/>
cimi</
note
>
cum æ quales baſes, & </
s
>
<
s
xml:id
="
echoid-s4028
"
xml:space
="
preserve
">altitudinem eandem habeant. </
s
>
<
s
xml:id
="
echoid-s4029
"
xml:space
="
preserve
">quare
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s4030
"
xml:space
="
preserve
">priſmata a e, f l, quæ ſunt harù pyramidum tripla, æqua-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0161-03
"
xlink:href
="
note-0161-03a
"
xml:space
="
preserve
">15. quintĩ</
note
>
lia ſint neceſſe eſt. </
s
>
<
s
xml:id
="
echoid-s4031
"
xml:space
="
preserve
">ex quibus perſpicue conſtat propoſitũ.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4032
"
xml:space
="
preserve
">Si uero altitudo priſmatis f l ſit maior, à priſmate f l ab-
<
lb
/>
ſcindatur priſma fm, quod æque altum ſit, atq; </
s
>
<
s
xml:id
="
echoid-s4033
"
xml:space
="
preserve
">ipſum a e.</
s
>
<
s
xml:id
="
echoid-s4034
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>