Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < (30) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="87">
          <p>
            <s xml:space="preserve">
              <pb o="30" file="0171" n="171" rhead="DE CENTRO GRAVIT. SOLID."/>
            pra demonſtratum eſt, ita eſſe cylindrum, uel cylindri por-
              <lb/>
              <anchor type="note" xlink:label="note-0171-01a" xlink:href="note-0171-01"/>
            tionem ad priſina, cuius baſis rectilinea figura, & </s>
            <s xml:space="preserve">æqua-
              <lb/>
            lis altitudo. </s>
            <s xml:space="preserve">ergo per conuerſionem rationis, ut circulus,
              <lb/>
            uel ellipſis ad portiones, ita conus, uel coni portio ad por-
              <lb/>
            tiones ſolidas. </s>
            <s xml:space="preserve">quare conus uel coni portio ad portiones
              <lb/>
            ſolidas maiorem habet proportionem, quam g e ad e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            diuidendo, pyramis ad portiones ſolidas maiorem pro-
              <lb/>
            portionem habet, quam g f ad f e. </s>
            <s xml:space="preserve">ſiat igitur q f ad f e
              <lb/>
            ut pyramis ad dictas portiones. </s>
            <s xml:space="preserve">Itaque quoniam à cono
              <lb/>
            uel coni portione, cuius grauitatis centrum eſt f, aufer-
              <lb/>
            tur pyramis, cuius centrum e; </s>
            <s xml:space="preserve">reliquæ magnitudinis,
              <lb/>
            quæ ex ſolidis portionibus conſtat, centrum grauitatis
              <lb/>
            erit in linea e f protracta, & </s>
            <s xml:space="preserve">in puncto q. </s>
            <s xml:space="preserve">quod fieri
              <lb/>
            non poteft: </s>
            <s xml:space="preserve">eſt enim centrum grauitatis intra. </s>
            <s xml:space="preserve">Conſtat
              <lb/>
            igitur coni, uel coni portionis grauitatis centrum eſſe pun
              <lb/>
            ctum e. </s>
            <s xml:space="preserve">quæ omnia demonſtrare oportebat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="3">
            <figure xlink:label="fig-0170-01" xlink:href="fig-0170-01a">
              <image file="0170-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0170-01"/>
            </figure>
            <note position="right" xlink:label="note-0171-01" xlink:href="note-0171-01a" xml:space="preserve">8. huius</note>
          </div>
        </div>
        <div type="section" level="1" n="88">
          <head xml:space="preserve">THEOREMA XIX. PROPOSITIO XXIII.</head>
          <p>
            <s xml:space="preserve">
              <emph style="sc">Qvodlibet</emph>
            fruſtum à pyramide, quæ
              <lb/>
            triangularem baſim habeat, abſciſſum, diuiditur
              <lb/>
            in tres pyramides proportionales, in ea proportio
              <lb/>
            ne, quæ eſt lateris maioris baſis ad latus minoris
              <lb/>
            ipſi reſpondens.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Hoc demonſtrauit Leonardus Piſanus in libro, qui de-
              <lb/>
            praxi geometriæ inſcribitur. </s>
            <s xml:space="preserve">Sed quoniam is adhucim-
              <lb/>
            preſſus non eſt, nos ipſius demonſtrationem breuíter
              <lb/>
            perſtringemus, rem ipſam ſecuti, non uerba. </s>
            <s xml:space="preserve">Sit fru-
              <lb/>
            ſtum pyramidis a b c d e f, cuíus maior baſis triangulum
              <lb/>
            a b c, minor d e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iunctis a e, e c, c d, per line-
              <lb/>
            as a e, e c ducatur planum ſecans fruſtum: </s>
            <s xml:space="preserve">itemque per
              <lb/>
            lineas e c, c d; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per c d, d a alia plana ducantur, quæ,
              <lb/>
            diuident fruſtum in tres pyramides a b c e, a d c e, d e f c.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>