Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="89">
          <p>
            <s xml:space="preserve">
              <pb file="0174" n="174" rhead="FED. COMMANDINI"/>
            per f planum baſibus æquidiſtans ducatur, ut ſit ſectio cir
              <lb/>
            culus, uel ellipſis circa diametrum f g. </s>
            <s xml:space="preserve">Dico ſectionem a b
              <lb/>
            ad ſectionem f g eandem proportionem habere, quam f g
              <lb/>
            ad ipſam c d. </s>
            <s xml:space="preserve">Simili enim ratione, qua ſupra, demonſtrabi-
              <lb/>
            tur quadratum a b ad quadratum f g ita eſſe, ut quadratũ
              <lb/>
            f g ad c d quadratum. </s>
            <s xml:space="preserve">Sed circuli inter ſe eandem propor-
              <lb/>
              <anchor type="note" xlink:label="note-0174-01a" xlink:href="note-0174-01"/>
            tionem habent, quam diametrorum quadrata. </s>
            <s xml:space="preserve">ellipſes au-
              <lb/>
            tem circa a b, f g, c d, quæ ſimiles ſunt, ut oſten dimus in cõ-
              <lb/>
            mentariis in principium libri Archimedis de conoidibus,
              <lb/>
            & </s>
            <s xml:space="preserve">ſphæroidibus, eam habẽt proportionem, quam quadrar
              <lb/>
            ta diametrorum, quæ eiuſdem rationis ſunt, ex corollaio-
              <lb/>
            ſeptimæ propoſitionis eiuſdem li-
              <lb/>
              <anchor type="figure" xlink:label="fig-0174-01a" xlink:href="fig-0174-01"/>
            bri. </s>
            <s xml:space="preserve">ellipſes enim nunc appello ip-
              <lb/>
            ſa ſpacia ellipſibus contenta. </s>
            <s xml:space="preserve">ergo
              <lb/>
            circulus, uel ellipſis a b ad circulũ,
              <lb/>
            uel ellipſim f g eam proportionem
              <lb/>
            habet, quam circulus, uel ellipſis
              <lb/>
            f g ad circulum uel ellipſim c d.
              <lb/>
            </s>
            <s xml:space="preserve">quod quidem facienduni propo-
              <lb/>
            ſuimus.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <note position="left" xlink:label="note-0174-01" xlink:href="note-0174-01a" xml:space="preserve">2. duode
              <lb/>
            cimi</note>
            <figure xlink:label="fig-0174-01" xlink:href="fig-0174-01a">
              <image file="0174-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0174-01"/>
            </figure>
          </div>
        </div>
        <div type="section" level="1" n="90">
          <head xml:space="preserve">THEOREMA XX. PROPOSITIO XXV.</head>
          <p>
            <s xml:space="preserve">
              <emph style="sc">Qvodlibet</emph>
            fruſtum pyramidis, uel coni,
              <lb/>
            uel coni portionis ad pyramidem, uel conum, uel
              <lb/>
            coni portionem, cuius baſis eadem eſt, & </s>
            <s xml:space="preserve">æqualis
              <lb/>
            altitudo, eandem proportionẽ habet, quam utræ
              <lb/>
            que baſes, maior, & </s>
            <s xml:space="preserve">minor ſimul ſumptæ vnà cũ
              <lb/>
            ea, quæ inter ipſas ſit proportionalis, ad baſim ma
              <lb/>
            iorem.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>