Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < (39) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="92">
          <p>
            <s xml:space="preserve">
              <pb o="39" file="0189" n="189" rhead="DE CENTRO GRAVIT. SOLID."/>
            dem, cuius baſis eſt quadratum a b c d, & </s>
            <s xml:space="preserve">altitudo e g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            in pyramidem, cuius eadé baſis, altitudoq; </s>
            <s xml:space="preserve">f g; </s>
            <s xml:space="preserve">ut ſint e g,
              <lb/>
            g f ſemidiametri ſphæræ, & </s>
            <s xml:space="preserve">linea una. </s>
            <s xml:space="preserve">Cũigitur g ſit ſphæ-
              <lb/>
            ræ centrum, erit etiam centrum circuli, qui circa quadratũ
              <lb/>
            a b c d deſcribitur: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">propterea eiuſdem quadrati grauita
              <lb/>
            tis centrum: </s>
            <s xml:space="preserve">quod in prima propoſitione huius demon-
              <lb/>
            ſtratum eſt. </s>
            <s xml:space="preserve">quare pyramidis a b c d e axis erit e g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">pyra
              <lb/>
            midis a b c d f axis f g. </s>
            <s xml:space="preserve">Itaque ſit h centrum grauitatis py-
              <lb/>
            ramidis a b c d e, & </s>
            <s xml:space="preserve">pyramidis a b c d f centrum ſit _K_: </s>
            <s xml:space="preserve">per-
              <lb/>
            ſpicuum eſt ex uigeſima ſecunda propoſitione huius, lineã
              <lb/>
            e h triplam eſſe h g: </s>
            <s xml:space="preserve">cõ
              <lb/>
              <anchor type="figure" xlink:label="fig-0189-01a" xlink:href="fig-0189-01"/>
            ponendoq; </s>
            <s xml:space="preserve">e g ipſius g
              <lb/>
            h quadruplam. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">eadẽ
              <lb/>
            ratione f g quadruplã
              <lb/>
            ipſius g k. </s>
            <s xml:space="preserve">quod cum e
              <lb/>
            g, g f ſintæquales, & </s>
            <s xml:space="preserve">h
              <lb/>
            g, g _k_ neceſſario æqua-
              <lb/>
            les erunt. </s>
            <s xml:space="preserve">ergo ex quar
              <lb/>
            ta propoſitione primi
              <lb/>
            libri Archimedis de cẽ-
              <lb/>
            tro grauitatis planorũ,
              <lb/>
            totius octahedri, quod
              <lb/>
            ex dictis pyramidibus
              <lb/>
            conſtat, centrum graui
              <lb/>
            tatis erit punctum g idem, quodipſius ſphæræ centrum.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="3">
            <figure xlink:label="fig-0189-01" xlink:href="fig-0189-01a">
              <image file="0189-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0189-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit icoſahedrum a d deſcriptum in ſphæra, cuius centrū
              <lb/>
            ſit g. </s>
            <s xml:space="preserve">Dico g ipſius icoſahedri grauitatis eſſe centrum. </s>
            <s xml:space="preserve">Si
              <lb/>
            enim ab angnlo a per g ducatur rectalinea uſque ad ſphæ
              <lb/>
            ræ ſuperficiem; </s>
            <s xml:space="preserve">conſtat ex ſexta decima propoſitione libri
              <lb/>
            tertii decimi elementorum, cadere eam in angulum ipſi a
              <lb/>
            oppoſitum. </s>
            <s xml:space="preserve">cadat in d: </s>
            <s xml:space="preserve">ſitq; </s>
            <s xml:space="preserve">una aliqua baſis icoſahedri tri-
              <lb/>
            angulum a b c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iunctæ b g, c g producantur, & </s>
            <s xml:space="preserve">cadant in
              <lb/>
            angulos e f, ipſis b c oppoſitos. </s>
            <s xml:space="preserve">Itaque per triangula
              <lb/>
            a b c, d e f ducantur plana ſphæram ſecantia. </s>
            <s xml:space="preserve">erunt hæ ſe-</s>
          </p>
        </div>
      </text>
    </echo>