Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="96">
          <p>
            <s xml:space="preserve">
              <pb file="0204" n="204" rhead="FED. COMMANDINI"/>
            ioris baſis ad quadratum minoris: </s>
            <s xml:space="preserve">centrum ſit in
              <lb/>
            eo axis puncto, quo ita diuiditur ut pars, quæ mi
              <lb/>
            norem baſim attingit ad alteram partem eandem
              <lb/>
            proportionem habeat, quam dempto quadrato
              <lb/>
            minoris baſis à duabus tertiis quadrati maioris,
              <lb/>
            habet id, quod reliquum eſt unà cum portione à
              <lb/>
            tertia quadrati maioris parte dempta, ad reliquà
              <lb/>
            eiuſdem tertiæ portionem.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">SIT fruſtum à portione rectanguli conoidis abſciſſum
              <lb/>
            a b c d, cuius maior baſis circulus, uel ellipſis circa diame-
              <lb/>
            trum b c, minor circa diametrum a d; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">axis e f. </s>
            <s xml:space="preserve">deſcriba-
              <lb/>
            tur autem portio conoidis, à quo illud abſciſſum eſt, & </s>
            <s xml:space="preserve">pla-
              <lb/>
              <anchor type="figure" xlink:label="fig-0204-01a" xlink:href="fig-0204-01"/>
            no per axem ducto ſecetur; </s>
            <s xml:space="preserve">ut ſuperficiei ſectio ſit parabo-
              <lb/>
            le b g c, cuius diameter, & </s>
            <s xml:space="preserve">axis portionis g f: </s>
            <s xml:space="preserve">deinde g f diui
              <lb/>
            datur in puncto h, ita ut g h ſit dupla h f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">rurſus g e in ean
              <lb/>
            dem proportionem diuidatur: </s>
            <s xml:space="preserve">ſitq; </s>
            <s xml:space="preserve">g _k_ ipſius k e dupla. </s>
            <s xml:space="preserve">Iã
              <lb/>
            ex iis, quæ proxime demonſtrauimus, conſtat centrum gra
              <lb/>
            uitatis portionis b g c eſſe h punctum: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">portionis a g c
              <lb/>
            punctum k. </s>
            <s xml:space="preserve">ſumpto igitur infra h punctol, ita ut k h ad h l</s>
          </p>
        </div>
      </text>
    </echo>