Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="64">
          <p>
            <s xml:space="preserve">
              <pb file="0118" n="118" rhead="FED. COMMANDINI"/>
            do in reliquis figuris æquilateris, & </s>
            <s xml:space="preserve">æquiangulis, quæ in cir-
              <lb/>
            culo deſcribuntur, probabimus cẽtrum grauitatis earum,
              <lb/>
            & </s>
            <s xml:space="preserve">centrum circuli idem eſſe. </s>
            <s xml:space="preserve">quod quidem demonſtrare
              <lb/>
            oportebat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="5">
            <figure xlink:label="fig-0117-02" xlink:href="fig-0117-02a">
              <image file="0117-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0117-02"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Ex quibus apparet cuiuslibet figuræ rectilineæ
              <lb/>
            in circulo plane deſcriptæ centrum grauitatis idẽ
              <lb/>
            eſſe, quod & </s>
            <s xml:space="preserve">circuli centrum.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Figuram in circulo plane deſcriptam appella-
              <lb/>
              <anchor type="note" xlink:label="note-0118-01a" xlink:href="note-0118-01"/>
            mus, cuiuſmodi eſt ea, quæ in duodecimo elemen
              <lb/>
            torum libro, propoſitione ſecunda deſcribitur.
              <lb/>
            </s>
            <s xml:space="preserve">ex æqualibus enim lateribus, & </s>
            <s xml:space="preserve">angulis conſtare
              <lb/>
            perſpicuum eſt.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="6">
            <note position="left" xlink:label="note-0118-01" xlink:href="note-0118-01a" xml:space="preserve">γνωρ@ μω@</note>
          </div>
        </div>
        <div type="section" level="1" n="65">
          <head xml:space="preserve">THEOREMA II. PROPOSITIO II.</head>
          <p>
            <s xml:space="preserve">Omnis figuræ rectilineæ in ellipſi plane deſcri-
              <lb/>
            ptæ centrum grauitatis eſt idem, quod ellipſis
              <lb/>
            centrum.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Quo modo figura rectilinea in ellipſi plane deſcribatur,
              <lb/>
            docuimus in commentarijs in quintam propoſitionem li-
              <lb/>
            bri Archimedis de conoidibus, & </s>
            <s xml:space="preserve">ſphæroidibus.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit ellipſis a b c d, cuius maior axis a c, minor b d: </s>
            <s xml:space="preserve">iun-
              <lb/>
            ganturq́; </s>
            <s xml:space="preserve">a b, b c, c d, d a: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">bifariam diuidantur in pun-
              <lb/>
            ctis e f g h. </s>
            <s xml:space="preserve">à centro autem, quod ſit k ductæ lineæ k e, k f,
              <lb/>
            k g, k h uſque ad ſectionem in puncta l m n o protrahan-
              <lb/>
            tur: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungantur l m, m n, n o, o l, ita ut a c ſecet li-
              <lb/>
            neas l o, m n, in z φ punctis, & </s>
            <s xml:space="preserve">b d ſecet l m, o n in χ ψ.
              <lb/>
            </s>
            <s xml:space="preserve">erunt l k, k n linea una, itemq́ue linea unaipſæ m k, k o: </s>
            <s xml:space="preserve">
              <lb/>
            & </s>
            <s xml:space="preserve">lineæ b a, c d æquidiſtabunt lineæ m o: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">b c, a d ipſi
              <lb/>
            l n. </s>
            <s xml:space="preserve">rurſus l o, m n axi b d æquidiſtabunt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">l m,</s>
          </p>
        </div>
      </text>
    </echo>