Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div254
"
type
="
section
"
level
="
1
"
n
="
87
">
<
p
>
<
s
xml:id
="
echoid-s4165
"
xml:space
="
preserve
">
<
pb
file
="
0168
"
n
="
168
"
rhead
="
FED. COMMANDINI
"/>
ſunt uertice, eandem proportionem habent, quam ipſarũ
<
lb
/>
baſes. </
s
>
<
s
xml:id
="
echoid-s4166
"
xml:space
="
preserve
">eadem ratione pyramis a c l k pyramidi b c l k: </
s
>
<
s
xml:id
="
echoid-s4167
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4168
"
xml:space
="
preserve
">py
<
lb
/>
ramis a d l k ipſi b d l k pyramidi æqualis erit. </
s
>
<
s
xml:id
="
echoid-s4169
"
xml:space
="
preserve
">Itaque ſi a py
<
lb
/>
ramide a c l d auferantur pyramides a clk, a d l k: </
s
>
<
s
xml:id
="
echoid-s4170
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4171
"
xml:space
="
preserve
">à pyra
<
lb
/>
mide b c l d auferãtur pyramides b c l k, d b l K: </
s
>
<
s
xml:id
="
echoid-s4172
"
xml:space
="
preserve
">quæ relin-
<
lb
/>
quuntur erunt æqualia. </
s
>
<
s
xml:id
="
echoid-s4173
"
xml:space
="
preserve
">æqualis igitur eſt pyramis a c d k
<
lb
/>
pyramidi b c d _K_. </
s
>
<
s
xml:id
="
echoid-s4174
"
xml:space
="
preserve
">Rurſus ſi per lineas a d, d e ducatur pla-
<
lb
/>
num quod pyramidem ſecet: </
s
>
<
s
xml:id
="
echoid-s4175
"
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:id
="
echoid-s4176
"
xml:space
="
preserve
">eius & </
s
>
<
s
xml:id
="
echoid-s4177
"
xml:space
="
preserve
">baſis communis
<
lb
/>
ſectio a e m: </
s
>
<
s
xml:id
="
echoid-s4178
"
xml:space
="
preserve
">ſimiliter oſtendetur pyramis a b d K æqualis
<
lb
/>
pyramidi a c d
<
emph
style
="
sc
">K</
emph
>
. </
s
>
<
s
xml:id
="
echoid-s4179
"
xml:space
="
preserve
">ducto denique alio piano per lineas c a,
<
lb
/>
a f: </
s
>
<
s
xml:id
="
echoid-s4180
"
xml:space
="
preserve
">ut eius, & </
s
>
<
s
xml:id
="
echoid-s4181
"
xml:space
="
preserve
">trianguli c d b communis ſectio ſit c fn, py-
<
lb
/>
ramis a b c k pyramidi a c d
<
emph
style
="
sc
">K</
emph
>
æqualis demonſtrabitur. </
s
>
<
s
xml:id
="
echoid-s4182
"
xml:space
="
preserve
">cũ
<
lb
/>
ergo tres pyramides b c d _k_, a b d k, a b c k uni, & </
s
>
<
s
xml:id
="
echoid-s4183
"
xml:space
="
preserve
">eidem py
<
lb
/>
ramidia c d k ſint æquales, omnes inter ſe ſe æquales erũt.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4184
"
xml:space
="
preserve
">Sed ut pyramis a b c d ad pyramidem a b c k, ita d e axis ad
<
lb
/>
axem k e, ex uigeſima propoſitione huius: </
s
>
<
s
xml:id
="
echoid-s4185
"
xml:space
="
preserve
">ſunt enim hæ
<
lb
/>
pyramides in eadem baſi, & </
s
>
<
s
xml:id
="
echoid-s4186
"
xml:space
="
preserve
">axes cum baſibus æquales con
<
lb
/>
tinent angulos, quòd in eadem recta linea conſtituantur. </
s
>
<
s
xml:id
="
echoid-s4187
"
xml:space
="
preserve
">
<
lb
/>
quare diuidendo, ut tres pyramides a c d k, b c d _K_, a b d _K_
<
lb
/>
ad pyramidem a b c _K_, ita d _k_ ad _K_ e. </
s
>
<
s
xml:id
="
echoid-s4188
"
xml:space
="
preserve
">conſtat igitur lineam
<
lb
/>
d K ipſius _K_ e triplam eſſe. </
s
>
<
s
xml:id
="
echoid-s4189
"
xml:space
="
preserve
">ſed & </
s
>
<
s
xml:id
="
echoid-s4190
"
xml:space
="
preserve
">a k tripla eſt K f: </
s
>
<
s
xml:id
="
echoid-s4191
"
xml:space
="
preserve
">itemque
<
lb
/>
b K ipſius _K_ g: </
s
>
<
s
xml:id
="
echoid-s4192
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4193
"
xml:space
="
preserve
">c
<
emph
style
="
sc
">K</
emph
>
ipſius
<
emph
style
="
sc
">K</
emph
>
l tripla. </
s
>
<
s
xml:id
="
echoid-s4194
"
xml:space
="
preserve
">quod eodem modo
<
lb
/>
demonſtrabimus.</
s
>
<
s
xml:id
="
echoid-s4195
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4196
"
xml:space
="
preserve
">Sit pyramis, cuius baſis quadrilaterum a b c d; </
s
>
<
s
xml:id
="
echoid-s4197
"
xml:space
="
preserve
">axis e f:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4198
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4199
"
xml:space
="
preserve
">diuidatur e fin g, ita ut e g ipſius g f ſit tripla. </
s
>
<
s
xml:id
="
echoid-s4200
"
xml:space
="
preserve
">Dico cen-
<
lb
/>
trum grauitatis pyramidis eſſe punctum g. </
s
>
<
s
xml:id
="
echoid-s4201
"
xml:space
="
preserve
">ducatur enim
<
lb
/>
linea b d diuidens baſim in duo triangula a b d, b c d: </
s
>
<
s
xml:id
="
echoid-s4202
"
xml:space
="
preserve
">ex
<
lb
/>
quibus intelligãtur cõſtitui duæ pyramides a b d e, b c d e: </
s
>
<
s
xml:id
="
echoid-s4203
"
xml:space
="
preserve
">
<
lb
/>
ſitque pyramidis a b d e axis e h; </
s
>
<
s
xml:id
="
echoid-s4204
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4205
"
xml:space
="
preserve
">pyramidis b c d e axis
<
lb
/>
e K: </
s
>
<
s
xml:id
="
echoid-s4206
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4207
"
xml:space
="
preserve
">iungatur h _K_, quæ per ftranſibit: </
s
>
<
s
xml:id
="
echoid-s4208
"
xml:space
="
preserve
">eſt enim in ipſa h K
<
lb
/>
centrum grauitatis magnitudinis compoſitæ ex triangulis
<
lb
/>
a b d, b c d, hoc eſt ipſius quadrilateri. </
s
>
<
s
xml:id
="
echoid-s4209
"
xml:space
="
preserve
">Itaque centrum gra
<
lb
/>
uitatis pyramidis a b d e ſit punctum l: </
s
>
<
s
xml:id
="
echoid-s4210
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4211
"
xml:space
="
preserve
">pyramidis b c d e
<
lb
/>
ſit m. </
s
>
<
s
xml:id
="
echoid-s4212
"
xml:space
="
preserve
">ductaigitur l m ipſi h m lineæ æquidiſtabit: </
s
>
<
s
xml:id
="
echoid-s4213
"
xml:space
="
preserve
">nam el ad
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0168-01
"
xlink:href
="
note-0168-01a
"
xml:space
="
preserve
">2. ſexti.</
note
>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>