Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(35)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div268
"
type
="
section
"
level
="
1
"
n
="
91
">
<
pb
o
="
35
"
file
="
0181
"
n
="
181
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
p
>
<
s
xml:id
="
echoid-s4500
"
xml:space
="
preserve
">Sit ſruſtum a e a pyramide, quæ triangularem baſim ha-
<
lb
/>
beat abſciſſum: </
s
>
<
s
xml:id
="
echoid-s4501
"
xml:space
="
preserve
">cuius maior baſis triangulum a b c, minor
<
lb
/>
d e f; </
s
>
<
s
xml:id
="
echoid-s4502
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4503
"
xml:space
="
preserve
">axis g h. </
s
>
<
s
xml:id
="
echoid-s4504
"
xml:space
="
preserve
">ducto autem plano per axem & </
s
>
<
s
xml:id
="
echoid-s4505
"
xml:space
="
preserve
">per lineã
<
lb
/>
d a, quod ſectionem faciat d a k l quadrilaterum; </
s
>
<
s
xml:id
="
echoid-s4506
"
xml:space
="
preserve
">puncta
<
lb
/>
K l lineas b c, e f bifariam ſecabunt. </
s
>
<
s
xml:id
="
echoid-s4507
"
xml:space
="
preserve
">nam cum g h ſit axis
<
lb
/>
ſruſti: </
s
>
<
s
xml:id
="
echoid-s4508
"
xml:space
="
preserve
">erit h centrum grauitatis trianguli a b c: </
s
>
<
s
xml:id
="
echoid-s4509
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4510
"
xml:space
="
preserve
">g
<
lb
/>
centrum trianguli d e f: </
s
>
<
s
xml:id
="
echoid-s4511
"
xml:space
="
preserve
">cen-
<
lb
/>
<
figure
xlink:label
="
fig-0181-01
"
xlink:href
="
fig-0181-01a
"
number
="
134
">
<
image
file
="
0181-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0181-01
"/>
</
figure
>
<
note
position
="
right
"
xlink:label
="
note-0181-01
"
xlink:href
="
note-0181-01a
"
xml:space
="
preserve
">3. diffi. hu
<
lb
/>
ius.</
note
>
trum uero cuiuslibet triangu
<
lb
/>
li eſt in recta linea, quæ ab an-
<
lb
/>
gulo ipſius ad dimidiã baſim
<
lb
/>
ducitur ex decimatertia primi
<
lb
/>
libri Archimedis de cẽtro gra
<
lb
/>
uitatis planorum. </
s
>
<
s
xml:id
="
echoid-s4512
"
xml:space
="
preserve
">quare cen-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0181-02
"
xlink:href
="
note-0181-02a
"
xml:space
="
preserve
">Vltima e-
<
lb
/>
auſdẽ libri
<
lb
/>
Archime-
<
lb
/>
dis.</
note
>
trũ grauitatis trapezii b c f e
<
lb
/>
eſt in linea _K_ l, quod ſit m: </
s
>
<
s
xml:id
="
echoid-s4513
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4514
"
xml:space
="
preserve
">à
<
lb
/>
puncto m ad axem ducta m n
<
lb
/>
ipſi a k, uel d l æquidiſtante;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4515
"
xml:space
="
preserve
">erit axis g h diuiſus in portio-
<
lb
/>
nes g n, n h, quas diximus: </
s
>
<
s
xml:id
="
echoid-s4516
"
xml:space
="
preserve
">ean
<
lb
/>
dem enim proportionem ha-
<
lb
/>
bet g n ad n h, quã l m ad m _k_. </
s
>
<
s
xml:id
="
echoid-s4517
"
xml:space
="
preserve
">
<
lb
/>
At l m ad m K habet eam, quã
<
lb
/>
duplum lateris maioris baſis
<
lb
/>
b c una cum latere minoris e f
<
lb
/>
ad duplum lateris e f unà cum
<
lb
/>
later b c, ex ultima eiuſdem
<
lb
/>
libri Archimedis. </
s
>
<
s
xml:id
="
echoid-s4518
"
xml:space
="
preserve
">Itaque à li-
<
lb
/>
nea n g abſcindatur, quarta
<
lb
/>
pars, quæ ſit n p: </
s
>
<
s
xml:id
="
echoid-s4519
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4520
"
xml:space
="
preserve
">ab axe h g abſcindatur itidem
<
lb
/>
quarta pars h o: </
s
>
<
s
xml:id
="
echoid-s4521
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4522
"
xml:space
="
preserve
">quam proportionem habet fruſtum ad
<
lb
/>
pyramidem, cuius maior baſis eſt triangulum a b c, & </
s
>
<
s
xml:id
="
echoid-s4523
"
xml:space
="
preserve
">alti-
<
lb
/>
tudo ipſi æqualis; </
s
>
<
s
xml:id
="
echoid-s4524
"
xml:space
="
preserve
">habeat o p ad p q. </
s
>
<
s
xml:id
="
echoid-s4525
"
xml:space
="
preserve
">Dico centrum graui-
<
lb
/>
tatis fruſti eſſe in linea p o, & </
s
>
<
s
xml:id
="
echoid-s4526
"
xml:space
="
preserve
">in puncto q. </
s
>
<
s
xml:id
="
echoid-s4527
"
xml:space
="
preserve
">namque ipſum
<
lb
/>
eſſe in linea g h manifeſte conſtat. </
s
>
<
s
xml:id
="
echoid-s4528
"
xml:space
="
preserve
">protractis enim fruſti </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>