Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
< >
page |< < (35) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div268" type="section" level="1" n="91">
          <pb o="35" file="0181" n="181" rhead="DE CENTRO GRAVIT. SOLID."/>
          <p>
            <s xml:id="echoid-s4500" xml:space="preserve">Sit ſruſtum a e a pyramide, quæ triangularem baſim ha-
              <lb/>
            beat abſciſſum: </s>
            <s xml:id="echoid-s4501" xml:space="preserve">cuius maior baſis triangulum a b c, minor
              <lb/>
            d e f; </s>
            <s xml:id="echoid-s4502" xml:space="preserve">& </s>
            <s xml:id="echoid-s4503" xml:space="preserve">axis g h. </s>
            <s xml:id="echoid-s4504" xml:space="preserve">ducto autem plano per axem & </s>
            <s xml:id="echoid-s4505" xml:space="preserve">per lineã
              <lb/>
            d a, quod ſectionem faciat d a k l quadrilaterum; </s>
            <s xml:id="echoid-s4506" xml:space="preserve">puncta
              <lb/>
            K l lineas b c, e f bifariam ſecabunt. </s>
            <s xml:id="echoid-s4507" xml:space="preserve">nam cum g h ſit axis
              <lb/>
            ſruſti: </s>
            <s xml:id="echoid-s4508" xml:space="preserve">erit h centrum grauitatis trianguli a b c: </s>
            <s xml:id="echoid-s4509" xml:space="preserve">& </s>
            <s xml:id="echoid-s4510" xml:space="preserve">g
              <lb/>
            centrum trianguli d e f: </s>
            <s xml:id="echoid-s4511" xml:space="preserve">cen-
              <lb/>
              <figure xlink:label="fig-0181-01" xlink:href="fig-0181-01a" number="134">
                <image file="0181-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0181-01"/>
              </figure>
              <note position="right" xlink:label="note-0181-01" xlink:href="note-0181-01a" xml:space="preserve">3. diffi. hu
                <lb/>
              ius.</note>
            trum uero cuiuslibet triangu
              <lb/>
            li eſt in recta linea, quæ ab an-
              <lb/>
            gulo ipſius ad dimidiã baſim
              <lb/>
            ducitur ex decimatertia primi
              <lb/>
            libri Archimedis de cẽtro gra
              <lb/>
            uitatis planorum. </s>
            <s xml:id="echoid-s4512" xml:space="preserve">quare cen-
              <lb/>
              <note position="right" xlink:label="note-0181-02" xlink:href="note-0181-02a" xml:space="preserve">Vltima e-
                <lb/>
              auſdẽ libri
                <lb/>
              Archime-
                <lb/>
              dis.</note>
            trũ grauitatis trapezii b c f e
              <lb/>
            eſt in linea _K_ l, quod ſit m: </s>
            <s xml:id="echoid-s4513" xml:space="preserve">& </s>
            <s xml:id="echoid-s4514" xml:space="preserve">à
              <lb/>
            puncto m ad axem ducta m n
              <lb/>
            ipſi a k, uel d l æquidiſtante;
              <lb/>
            </s>
            <s xml:id="echoid-s4515" xml:space="preserve">erit axis g h diuiſus in portio-
              <lb/>
            nes g n, n h, quas diximus: </s>
            <s xml:id="echoid-s4516" xml:space="preserve">ean
              <lb/>
            dem enim proportionem ha-
              <lb/>
            bet g n ad n h, quã l m ad m _k_. </s>
            <s xml:id="echoid-s4517" xml:space="preserve">
              <lb/>
            At l m ad m K habet eam, quã
              <lb/>
            duplum lateris maioris baſis
              <lb/>
            b c una cum latere minoris e f
              <lb/>
            ad duplum lateris e f unà cum
              <lb/>
            later b c, ex ultima eiuſdem
              <lb/>
            libri Archimedis. </s>
            <s xml:id="echoid-s4518" xml:space="preserve">Itaque à li-
              <lb/>
            nea n g abſcindatur, quarta
              <lb/>
            pars, quæ ſit n p: </s>
            <s xml:id="echoid-s4519" xml:space="preserve">& </s>
            <s xml:id="echoid-s4520" xml:space="preserve">ab axe h g abſcindatur itidem
              <lb/>
            quarta pars h o: </s>
            <s xml:id="echoid-s4521" xml:space="preserve">& </s>
            <s xml:id="echoid-s4522" xml:space="preserve">quam proportionem habet fruſtum ad
              <lb/>
            pyramidem, cuius maior baſis eſt triangulum a b c, & </s>
            <s xml:id="echoid-s4523" xml:space="preserve">alti-
              <lb/>
            tudo ipſi æqualis; </s>
            <s xml:id="echoid-s4524" xml:space="preserve">habeat o p ad p q. </s>
            <s xml:id="echoid-s4525" xml:space="preserve">Dico centrum graui-
              <lb/>
            tatis fruſti eſſe in linea p o, & </s>
            <s xml:id="echoid-s4526" xml:space="preserve">in puncto q. </s>
            <s xml:id="echoid-s4527" xml:space="preserve">namque ipſum
              <lb/>
            eſſe in linea g h manifeſte conſtat. </s>
            <s xml:id="echoid-s4528" xml:space="preserve">protractis enim fruſti </s>
          </p>
        </div>
      </text>
    </echo>