Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div286
"
type
="
section
"
level
="
1
"
n
="
96
">
<
p
>
<
s
xml:id
="
echoid-s5103
"
xml:space
="
preserve
">
<
pb
file
="
0204
"
n
="
204
"
rhead
="
FED. COMMANDINI
"/>
ioris baſis ad quadratum minoris: </
s
>
<
s
xml:id
="
echoid-s5104
"
xml:space
="
preserve
">centrum ſit in
<
lb
/>
eo axis puncto, quo ita diuiditur ut pars, quæ mi
<
lb
/>
norem baſim attingit ad alteram partem eandem
<
lb
/>
proportionem habeat, quam dempto quadrato
<
lb
/>
minoris baſis à duabus tertiis quadrati maioris,
<
lb
/>
habet id, quod reliquum eſt unà cum portione à
<
lb
/>
tertia quadrati maioris parte dempta, ad reliquà
<
lb
/>
eiuſdem tertiæ portionem.</
s
>
<
s
xml:id
="
echoid-s5105
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5106
"
xml:space
="
preserve
">SIT fruſtum à portione rectanguli conoidis abſciſſum
<
lb
/>
a b c d, cuius maior baſis circulus, uel ellipſis circa diame-
<
lb
/>
trum b c, minor circa diametrum a d; </
s
>
<
s
xml:id
="
echoid-s5107
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5108
"
xml:space
="
preserve
">axis e f. </
s
>
<
s
xml:id
="
echoid-s5109
"
xml:space
="
preserve
">deſcriba-
<
lb
/>
tur autem portio conoidis, à quo illud abſciſſum eſt, & </
s
>
<
s
xml:id
="
echoid-s5110
"
xml:space
="
preserve
">pla-
<
lb
/>
<
figure
xlink:label
="
fig-0204-01
"
xlink:href
="
fig-0204-01a
"
number
="
150
">
<
image
file
="
0204-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0204-01
"/>
</
figure
>
no per axem ducto ſecetur; </
s
>
<
s
xml:id
="
echoid-s5111
"
xml:space
="
preserve
">ut ſuperficiei ſectio ſit parabo-
<
lb
/>
le b g c, cuius diameter, & </
s
>
<
s
xml:id
="
echoid-s5112
"
xml:space
="
preserve
">axis portionis g f: </
s
>
<
s
xml:id
="
echoid-s5113
"
xml:space
="
preserve
">deinde g f diui
<
lb
/>
datur in puncto h, ita ut g h ſit dupla h f: </
s
>
<
s
xml:id
="
echoid-s5114
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5115
"
xml:space
="
preserve
">rurſus g e in ean
<
lb
/>
dem proportionem diuidatur: </
s
>
<
s
xml:id
="
echoid-s5116
"
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:id
="
echoid-s5117
"
xml:space
="
preserve
">g _k_ ipſius k e dupla. </
s
>
<
s
xml:id
="
echoid-s5118
"
xml:space
="
preserve
">Iã
<
lb
/>
ex iis, quæ proxime demonſtrauimus, conſtat centrum gra
<
lb
/>
uitatis portionis b g c eſſe h punctum: </
s
>
<
s
xml:id
="
echoid-s5119
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5120
"
xml:space
="
preserve
">portionis a g c
<
lb
/>
punctum k. </
s
>
<
s
xml:id
="
echoid-s5121
"
xml:space
="
preserve
">ſumpto igitur infra h punctol, ita ut k h ad h </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>