Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
< >
page |< < (3) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="64">
          <p>
            <s xml:space="preserve">
              <pb o="3" file="0117" n="117" rhead="DE CENTRO GRAVIT. SOLID."/>
            cta b d in g puncto, ducatur c g; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">protrahatur ad circuli
              <lb/>
            uſque circumferentiam; </s>
            <s xml:space="preserve">quæ ſecet a e in h. </s>
            <s xml:space="preserve">Similiter conclu
              <lb/>
            demus c g per centrum circuli tranſire: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">bifariam ſecare
              <lb/>
            lineam a e; </s>
            <s xml:space="preserve">itemq́; </s>
            <s xml:space="preserve">lineas b d, a e inter ſe æquidiſtantes eſſe.
              <lb/>
            </s>
            <s xml:space="preserve">Cumigitur c g per centrum circuli tranſeat; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ad punctũ
              <lb/>
            f perueniat neceſſe eſt: </s>
            <s xml:space="preserve">quòd c d e f ſit dimidium circumfe
              <lb/>
            rentiæ circuli. </s>
            <s xml:space="preserve">Quare in eadem
              <lb/>
              <anchor type="figure" xlink:label="fig-0117-01a" xlink:href="fig-0117-01"/>
            diametro c f erunt centra gra
              <lb/>
              <anchor type="note" xlink:label="note-0117-01a" xlink:href="note-0117-01"/>
            uitatis triangulorum b c d,
              <lb/>
            a f e, & </s>
            <s xml:space="preserve">quadrilateri a b d e, ex
              <lb/>
              <anchor type="note" xlink:label="note-0117-02a" xlink:href="note-0117-02"/>
            quibus conſtat hexagonum a b
              <lb/>
            c d e f. </s>
            <s xml:space="preserve">perſpicuum eſt igitur in
              <lb/>
            ipſa c f eſſe circuli centrum, & </s>
            <s xml:space="preserve">
              <lb/>
            centrum grauitatis hexagoni.
              <lb/>
            </s>
            <s xml:space="preserve">Rurſus ducta altera diametro
              <lb/>
            a d, eiſdem rationibus oſtende-
              <lb/>
            mus in ipſa utrumque cẽtrum
              <lb/>
            ineſſe. </s>
            <s xml:space="preserve">Centrum ergo grauita-
              <lb/>
            tis hexagoni, & </s>
            <s xml:space="preserve">centrum circuli idem erit.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="4">
            <figure xlink:label="fig-0117-01" xlink:href="fig-0117-01a">
              <image file="0117-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0117-01"/>
            </figure>
            <note position="right" xlink:label="note-0117-01" xlink:href="note-0117-01a" xml:space="preserve">13. Archi
              <lb/>
            medis.</note>
            <note position="right" xlink:label="note-0117-02" xlink:href="note-0117-02a" xml:space="preserve">9. @iuſdé.</note>
          </div>
          <p>
            <s xml:space="preserve">Sit heptagonum a b c d e f g æquilaterum atque æquian
              <lb/>
            gulum in circulo deſcriptum:
              <lb/>
            </s>
            <s xml:space="preserve">
              <anchor type="figure" xlink:label="fig-0117-02a" xlink:href="fig-0117-02"/>
            & </s>
            <s xml:space="preserve">iungantur c e, b f, a g: </s>
            <s xml:space="preserve">di-
              <lb/>
            uiſa autem c e bifariam in pũ
              <lb/>
            cto h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iuncta d h produca-
              <lb/>
            tur in k. </s>
            <s xml:space="preserve">non aliter demon-
              <lb/>
            ſtrabimus in linea d k eſſe cen
              <lb/>
            trum circuli, & </s>
            <s xml:space="preserve">centrum gra-
              <lb/>
            uitatis trianguli c d e, & </s>
            <s xml:space="preserve">tra-
              <lb/>
            peziorum b c e f, a b f g, hoc
              <lb/>
            eſt centrum totius heptago-
              <lb/>
            ni: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">rurſus eadem centra in
              <lb/>
            alia diametro cl ſimiliter du-
              <lb/>
            cta contineri. </s>
            <s xml:space="preserve">Quare & </s>
            <s xml:space="preserve">centrum grauitatis heptagoni, & </s>
            <s xml:space="preserve">
              <lb/>
            centrum circuli in idem punctum conucniunt. </s>
            <s xml:space="preserve">Eodem mo</s>
          </p>
        </div>
      </text>
    </echo>